题目内容
(2009•黄浦区一模)若f(n)=1+2+3+…+n(n∈N*),则
=
| lim |
| n→+∞ |
| f(n2) |
| [f(n)]2 |
2
2
.分析:先利用等差数列的求和公式求和得
,再代入化简,利用
=0,
=0即可求解.
| n(n+1) |
| 2 |
| lim |
| n→∞ |
| 1 |
| n2 |
| lim |
| n→∞ |
| 1 |
| n |
解答:解:由题意,f(n)=1+2+3+…+n=
∴
=
=
=
∴
=2
故答案为2
| n(n+1) |
| 2 |
∴
| f(n2) |
| [f(n)]2 |
| ||
|
| 2(n2+1) |
| n2+2n+1 |
2(1+
| ||||
1+
|
∴
| lim |
| n→+∞ |
| f(n2) |
| [f(n)]2 |
故答案为2
点评:本题的考点是数列的极限,主要考查等差数列的求和问题,考查数列极限的求法,利用
=0,
=0是解题的关键.
| lim |
| n→∞ |
| 1 |
| n2 |
| lim |
| n→∞ |
| 1 |
| n |
练习册系列答案
相关题目