题目内容
设函数f(x)=sin(2x+φ)(-π<φ<0).y=f(x)图象的一条对称轴是直线x=
.
(1)求函数f(x)的解析式;
(2)若f(
)=
,α∈(0,π),试求f(α+
)的值.
| π |
| 8 |
(1)求函数f(x)的解析式;
(2)若f(
| α |
| 2 |
| 3 |
| 5 |
| 5π |
| 8 |
分析:(1)根据x=
是函数y=f(x)的图象的对称轴,求得sin(2×
+?)=±1,再根据?的范围求出?的值,即可求得函数的解析式.
(2)由f(
)=
,α∈(0,π),求得sin(α-
) 和cos(α-
)的值,利用两角和的正弦公式求得sinα的值,再利用二倍角公式求得f(α+
)=sin[2(α+
)-
]=cos2α 的值.
| π |
| 8 |
| π |
| 8 |
(2)由f(
| α |
| 2 |
| 3 |
| 5 |
| 3π |
| 4 |
| 3π |
| 4 |
| 5π |
| 8 |
| 5π |
| 8 |
| 3π |
| 4 |
解答:解:(1)∵x=
是函数y=f(x)的图象的对称轴,
∴sin(2×
+?)=±1,∴
+?=kπ+
,k∈Z,…(2分)
∵-π<?<0,∴?=-
,…(4分)
故f(x)=sin(2x-
)…(6分)
(2)因为f(
)=
,α∈(0,π),
所以sin(α-
)=
,cos(α-
)=
.…(8分)
故sinα=sin[(α-
)+
]=sin(α-
)•cos
+cos(α-
)•sin
=
(
-
)=
.…(11分)
故有 f(α+
)=sin[2(α+
)-
]=sin(2α+
)=cos2α
=1-2sin2α=1-2(
)2=
.…(14分)
| π |
| 8 |
∴sin(2×
| π |
| 8 |
| π |
| 4 |
| π |
| 2 |
∵-π<?<0,∴?=-
| 3π |
| 4 |
故f(x)=sin(2x-
| 3π |
| 4 |
(2)因为f(
| α |
| 2 |
| 3 |
| 5 |
所以sin(α-
| 3π |
| 4 |
| 3 |
| 5 |
| 3π |
| 4 |
| 4 |
| 5 |
故sinα=sin[(α-
| 3π |
| 4 |
| 3π |
| 4 |
| 3π |
| 4 |
| 3π |
| 4 |
| 3π |
| 4 |
| 3π |
| 4 |
=
| ||
| 2 |
| 4 |
| 5 |
| 3 |
| 5 |
| ||
| 10 |
故有 f(α+
| 5π |
| 8 |
| 5π |
| 8 |
| 3π |
| 4 |
| π |
| 2 |
=1-2sin2α=1-2(
| ||
| 10 |
| 24 |
| 25 |
点评:本题主要考查利用y=Asin(ωx+∅)的图象特征,由函数y=Asin(ωx+∅)的部分图象求解析式,两角和差的正弦公式的应用,同角三角函数的基本关系,属于中档题.
练习册系列答案
相关题目