题目内容

f(x)=(0<x<1).

(1)设a1=1,an+1=f-1(an)(nN*),求an的通项公式;

(2)在(1)的条件下,又设b1=,bn+1=(1+bn)2f-1(bn)(nN*),证明当n≥2时,有1<+ +…+<2.

(1)解:y=,由x∈(0,1),得y∈(0,+∞)且x=,

f-1(x)=(x>0).                                                                                             ?

an+1=,=+1,?

=1+(n-1)×1=n,∴an=.                                                                                  ?

(2)证明:由bn+1=(1+bn)2=bn+bn2bn,?

bn为递增数列,bn>0,?

==-,由b1=,得b2=.?                                                ?

==-.                                                                              ?

n≥2时,++…++=+>1.           ?

++…+=()+()?+…+(-)?

=-?

=2-<2.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网