题目内容
如图,A,B,C,D四点在同一圆上,AD的延长线与BC的延长线交于E点,且EC=ED.
(1)证明:CD∥AB;
(2)延长CD到F,延长DC到G,使得EF=EG,证明:A,B,G,F四点共圆.
在五棱锥P-ABCDE中,PA=AB=AE=2a,PB=PE=2a,BC=DE=a,∠EAB=∠ABC=∠DEA=90°.
(1)求证:PA⊥平面ABCDE;
(2)求二面角A-PD-E的正弦值.
在一段时间内有2000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如下面的频率分布直方图所示.若该处高速公路规定正常行驶速度为~,试估计2000辆车中在这段时间内以正常速度通过该处的汽车约有 辆.
不等式的解集为 .
已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.
(1)求C的方程;
(2)过F的直线l与C相交于A,B两点,若AB的垂直平分线l’与C相较于M,N两点,且A,M,B,N四点在同一圆上,求l的方程.
设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA,且B为钝角.
(Ⅰ)证明:B-A=;
(Ⅱ)求sinA+sinC的取值范围.
函数 f(x)=ex可以表示成一个奇函数 g(x) 与一个偶函数h(x) 之和,则g(x) .
如图,已知椭圆的左、右焦点为为椭圆上一点,为椭圆上顶点,在上,.
(1)求当离心率时的椭圆方程;
(2)求满足题设要求的椭圆离心率的取值范围;
(3)当椭圆离心率最小时,若过的直线与椭圆交于(不同于点)两点,试问:是否为定值?并给出证明.
某港口要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口北偏西且与该港口相距20海里的处,并以30海里/时的航行速度沿正东方向匀速行驶,假设该小船沿直线方向以海里/时的航行速度匀速行驶,经过小时与轮船相遇.
(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?
(2)假设小艇的最高航行速度只能达到30海里/时,试设计航行方案(即确定航行方向与航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.