题目内容
在下列命题中, ①“
”是“
”的充要条件;②
的展开式中的常数项为
;③设随机变量
~
,若
,则
.其中所有正确命题的序号是( )
| A.② | B.②③ | C.③ | D.①③ |
B
解析试题分析:①是充分不必要条件,故错误;②
,令12-4k=0,得,k=3,所以,常数项为2,正确;③正态分布曲线的对称轴是x=0,
,所以,
正确;
考点:充分、必要条件,三角函数,二项式定理,标准正态分布.
练习册系列答案
相关题目
某校周四下午第五、六两节是选修课时间,现有甲、乙、丙、丁四位教师可开课。已知甲、乙教师各自最多可以开设两节课,丙、丁教师各自最多可以开设一节课.现要求第五、六两节课中每节课恰有两位教师开课(不必考虑教师所开课的班级和内容),则不同的开课方案共有( )种。
| A.20 | B.19 | C.16 | D.15 |
设
的展开式的各项系数和为
,二项式系数和为
,若
,则展开式中
的系数为 ( )
| A. | B. | C. | D. |
已知关于
的二项式
展开式的二项式系数之和为32,常数项为80,则
的值为( )
| A.1 | B.±1 | C.2 | D.±2 |
现有12件商品摆放在货架上,摆成上层4件下层8件,现要从下层8件中取2件调整到上层,若其他商品的相对顺序不变,则不同调整方法的种数是( )
| A.420 | B.560 | C.840 | D.20160 |
的二项展开式中,
项的系数是( )
| A.45 | B.90 | C.135 | D.270 |
二项式
的展开式中常数项是
| A.28 | B.-7 | C.7 | D.-28 |
有4名优秀学生A,B,C,D全部被保送到甲、乙、丙3所学校,每所学校至少去一名,且A生不去甲校,则不同的保送方案有( ).
| A.24种 | B.30种 | C.36种 | D.48种 |