题目内容
已知数列{an},{bn}满足a1=2,2an=1+anan+1,bn=an-1,数列{bn}的前n项和为Sn,Tn=S2n-Sn.
(1)求证:数列{
}为等差数列,并求通项bn;
(2)求证:Tn+1>Tn;
(3)求证:当n≥2时,S2n≥
.
(1)求证:数列{
| 1 |
| bn |
(2)求证:Tn+1>Tn;
(3)求证:当n≥2时,S2n≥
| 7n+11 |
| 12 |
(1)由bn=an-1,得an=bn+1,代入2an=1+anan+1,
得2(bn+1)=1+(bn+1)(bn+1+1),
∴bnbn+1+bn+1-bn=0,从而有
-
=1,
∵b1=a1-1=2-1=1,
∴{
}是首项为1,公差为1的等差数列,
∴
=n,即bn=
;(5分)
(2)∵Sn=1+
++
,
∴Tn=S2n-Sn=
+
++
,
Tn+1=
+
++
+
+
,Tn+1-Tn=
+
-
>
+
-
=0,
∴Tn+1>Tn;(10分)
(3)∵n≥2,
∴S2n=S2n-S2n-1+S2n-1-S2n-2++S2-S1+S1
=T2n-1+T2n-2+…+T2+T1+S1.
由(2)知T2n-1≥T2n-2≥…≥T2≥T1≥S1,
∵T1=
,S1=1,T2=
,
∴S2n=T2n-1+T2n-2+…+T2+T1+S1
≥(n-1)T2+T1+S1=
(n-1)+
+1=
.(16分)
得2(bn+1)=1+(bn+1)(bn+1+1),
∴bnbn+1+bn+1-bn=0,从而有
| 1 |
| bn+1 |
| 1 |
| bn |
∵b1=a1-1=2-1=1,
∴{
| 1 |
| bn |
∴
| 1 |
| bn |
| 1 |
| n |
(2)∵Sn=1+
| 1 |
| 2 |
| 1 |
| n |
∴Tn=S2n-Sn=
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n |
Tn+1=
| 1 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 2n |
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
| 1 |
| n+1 |
| 1 |
| 2n+2 |
| 1 |
| 2n+2 |
| 1 |
| n+1 |
∴Tn+1>Tn;(10分)
(3)∵n≥2,
∴S2n=S2n-S2n-1+S2n-1-S2n-2++S2-S1+S1
=T2n-1+T2n-2+…+T2+T1+S1.
由(2)知T2n-1≥T2n-2≥…≥T2≥T1≥S1,
∵T1=
| 1 |
| 2 |
| 7 |
| 12 |
∴S2n=T2n-1+T2n-2+…+T2+T1+S1
≥(n-1)T2+T1+S1=
| 7 |
| 12 |
| 1 |
| 2 |
| 7n+11 |
| 12 |
练习册系列答案
相关题目