题目内容
已知数列{an}的首项a1=| 2 |
| 3 |
| 2an |
| an+1 |
(Ⅰ)证明:数列{
| 1 |
| an |
(Ⅱ)求数列{
| n |
| an |
分析:(1)化简an+1=
构造新的数列 {
-1},进而证明数列{
-1}是等比数列.
(2)根据(1)求出数列{
-1}的递推公式,得出an,进而构造数列{
},求出数列{
}的通项公式,进而求出前n项和Sn.
| 2an |
| an+1 |
| 1 |
| an |
| 1 |
| an |
(2)根据(1)求出数列{
| 1 |
| an |
| n |
| an |
| n |
| an |
解答:解:(Ⅰ)由已知:an+1=
,
∴
=
=
+
•
,(2分)
∴
-1=
(
-1),
又a1=
,∴
-1=
,(4分)
∴数列{
-1}是以
为首项,
为公比的等比数列.(6分)
(Ⅱ)由(Ⅰ)知
-1=
•(
)n-1=
,
即
=
+1,∴
=
+n.(8分)
设Tn=
+
+
++
,①
则
Tn=
+
++
+
,②
由①-②得:
Tn=
+
++
-
=
-
=1-
-
,(10分)
∴Tn=2-
-
.又1+2+3++n=
.(12分)
∴数列{
}的前n项和:Sn=2-
+
=
-
.(14分)
| 2an |
| an+1 |
∴
| 1 |
| an+1 |
| an+1 |
| 2an |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| an |
∴
| 1 |
| an+1 |
| 1 |
| 2 |
| 1 |
| an |
又a1=
| 2 |
| 3 |
| 1 |
| a1 |
| 1 |
| 2 |
∴数列{
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| 2 |
(Ⅱ)由(Ⅰ)知
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2n |
即
| 1 |
| an |
| 1 |
| 2n |
| n |
| an |
| n |
| 2n |
设Tn=
| 1 |
| 2 |
| 2 |
| 22 |
| 3 |
| 23 |
| n |
| 2n |
则
| 1 |
| 2 |
| 1 |
| 22 |
| 2 |
| 23 |
| n-1 |
| 2n |
| n |
| 2n+1 |
由①-②得:
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n |
| n |
| 2n+1 |
| ||||
1-
|
| n |
| 2n+1 |
| 1 |
| 2n |
| n |
| 2n+1 |
∴Tn=2-
| 1 |
| 2n-1 |
| n |
| 2n |
| n(n+1) |
| 2 |
∴数列{
| n |
| an |
| 2+n |
| 2n |
| n(n+1) |
| 2 |
| n2+n+4 |
| 2 |
| 2+n |
| 2n |
点评:此题主要考查通过构造新数列达到求解数列的通项公式和前n项和的方法.
练习册系列答案
相关题目