题目内容

若点P在椭圆x2+2y2=2上,F1、F2分别是椭圆的两焦点,且∠F1PF2=90°,则△F1PF2的面积是
1
1
分析:由椭圆的定义可得 m+n=2a=2
2
①,Rt△F1PF2中,由勾股定理可得m2+n2=4②,由①②可得m•n的值,利用△F1PF2的面积是
1
2
m•n求得结果.
解答:解:由椭圆的方程可得 a=
2
,b=1,c=1,令|F1P|=m、|PF2|=n,
由椭圆的定义可得 m+n=2a=2
2
①,
Rt△F1PF2 中,由勾股定理可得(2c)2=m2+n2,m2+n2=4②,由①②可得m•n=2,
∴△F1PF2的面积是
1
2
m•n=1.
故答案为:1.
点评:本题考查三角形面积的计算,考查椭圆的定义,考查勾股定理,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网