ÌâÄ¿ÄÚÈÝ
£¨2012•ïÃû¶þÄ££©ÔÚÆ½ÃæÖ±½Ç×ø±êϵxoyÖУ¬¶¯µãPÔÚÍÖÔ²C1£º
+y2=1ÉÏ£¬¶¯µãQÊǶ¯Ô²C2£ºx2+y2=r2£¨1£¼r£¼2£©ÉÏÒ»µã£®
£¨1£©ÇóÖ¤£º¶¯µãPµ½ÍÖÔ²C1µÄÓÒ½¹µãµÄ¾àÀëÓëµ½Ö±Ïßx=2µÄ¾àÀëÖ®±ÈµÈÓÚÍÖÔ²µÄÀëÐÄÂÊ£»
£¨2£©ÉèÍÖÔ²C1ÉϵÄÈýµãA£¨x1£¬y1£©£¬B£¨1£¬
£©£¬C£¨x2£¬y2£©ÓëµãF£¨1£¬0£©µÄ¾àÀë³ÉµÈ²îÊýÁУ¬Ïß¶ÎACµÄ´¹Ö±Æ½·ÖÏßÊÇ·ñ¾¹ýÒ»¸ö¶¨µãΪ£¿Çë˵Ã÷ÀíÓÉ£®
£¨3£©ÈôÖ±ÏßPQÓëÍÖÔ²C1ºÍ¶¯Ô²C2¾ùÖ»ÓÐÒ»¸ö¹«¹²µã£¬ÇóP¡¢QÁ½µãµÄ¾àÀë|PQ|µÄ×î´óÖµ£®
| x2 |
| 2 |
£¨1£©ÇóÖ¤£º¶¯µãPµ½ÍÖÔ²C1µÄÓÒ½¹µãµÄ¾àÀëÓëµ½Ö±Ïßx=2µÄ¾àÀëÖ®±ÈµÈÓÚÍÖÔ²µÄÀëÐÄÂÊ£»
£¨2£©ÉèÍÖÔ²C1ÉϵÄÈýµãA£¨x1£¬y1£©£¬B£¨1£¬
| ||
| 2 |
£¨3£©ÈôÖ±ÏßPQÓëÍÖÔ²C1ºÍ¶¯Ô²C2¾ùÖ»ÓÐÒ»¸ö¹«¹²µã£¬ÇóP¡¢QÁ½µãµÄ¾àÀë|PQ|µÄ×î´óÖµ£®
·ÖÎö£º£¨1£©É趯µãP£¨x0£¬y0£©£¬Ôò
+y02=1£¬¸ù¾ÝÁ½µã¼ä¾àÀ빫ʽ¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¼´¿É¼ÆËãµÃµ½ÓÒ½¹µãµÄ¾àÀëÓëµ½Ö±Ïßx=2µÄ¾àÀëÖ®±ÈµÈÓÚÍÖÔ²µÄÀëÐÄÂÊ£»
£¨2£©ÓÉ£¨1£©½áÂÛ¿ÉÓÃÀëÐÄÂʼ°µãA¡¢B¡¢Cºá×ø±ê±íʾ|AF|¡¢|BF|¡¢|CF|£¬ÓÉÆä³ÉµÈ²îÊýÁпɵÃx1+x2=2£¬ÓÉA£¬CÔÚÍÖÔ²ÉϵÃ
+y12=1£¬
+y22=1£¬Á½Ê½Ïà¼õÕûÀíµÃÖ±ÏßACбÂÊ£¬ÉèÏß¶ÎACµÄÖе㣨m£¬n£©£¬Óɵãбʽ¿ÉµÃAC´¹Ö±Æ½·ÖÏß·½³Ì£¬ÓÉÖеã×ø±ê¹«Ê½¿É°Ñ¸Ã´¹Ö±Æ½·ÖÏß·½³Ì»¯ÎªÖªº¬²ÎÊýnµÄ·½³Ì£¬¾Ý´Ë¿ÉµÃ¶¨µã£®
£¨3£©Ò×ÖªÖ±ÏßPQµÄбÂÊ´æÔÚ£¬ÉèÖ±Ïß·½³ÌΪy=kx+m£¬ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬ÓÉ
µÃ(2k2+1)x12+4kmx1+2(m2-1)=0 £¬ÓÉÖ±ÏßÓëÍÖÔ²ÏàÇеá÷=0£¬x1=-
¢Ù£¬ÓÉÖ±ÏßPQÓëÔ²C2ÏàÇУ¬Ôò
=r¢Ú£¬ÁªÁ¢¢Ù¢Ú¿ÉÏûµôm£¬Óɹ´¹É¶¨Àí¿É°Ñ|PQ|2±íʾΪrµÄº¯Êý£¬ÔÙÓûù±¾²»µÈʽ¿ÉµÃÆä×î´óÖµ£»
| x02 |
| 2 |
£¨2£©ÓÉ£¨1£©½áÂÛ¿ÉÓÃÀëÐÄÂʼ°µãA¡¢B¡¢Cºá×ø±ê±íʾ|AF|¡¢|BF|¡¢|CF|£¬ÓÉÆä³ÉµÈ²îÊýÁпɵÃx1+x2=2£¬ÓÉA£¬CÔÚÍÖÔ²ÉϵÃ
| x12 |
| 2 |
| x22 |
| 2 |
£¨3£©Ò×ÖªÖ±ÏßPQµÄбÂÊ´æÔÚ£¬ÉèÖ±Ïß·½³ÌΪy=kx+m£¬ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬ÓÉ
|
| 2k |
| m |
| |m| | ||
|
½â´ð£º£¨1£©Ö¤Ã÷£ºÉ趯µãP£¨x0£¬y0£©£¬Ôò
+y02=1£¬
ÓÒ½¹µãµÄ¾àÀëÓëµ½Ö±Ïßx=2µÄ¾àÀëÖ®±ÈΪ£º
=
=
=
£¬
¶øa=
£¬c=1£¬ËùÒÔÀëÐÄÂÊe=
£¬
¹Ê¶¯µãPµ½ÍÖÔ²C1µÄÓÒ½¹µãµÄ¾àÀëÓëµ½Ö±Ïßx=2µÄ¾àÀëÖ®±ÈµÈÓÚÍÖÔ²µÄÀëÐÄÂÊ£»
£¨2£©ÓÉ£¨1£©¿ÉµÃ|AF|=
(2-x1)£¬|BF|=
(2-1)£¬|CF|=
(2-x2)£¬
ÒòΪ2|BF|=|AF|+|CF|£¬
ËùÒÔ
(2-x1)+
(2-x2)=2¡Á
(2-1)£¬¼´µÃx1+x2=2£¬
ÒòΪA£¬CÔÚÍÖÔ²ÉÏ£¬¹ÊÓÐ
+y12=1£¬
+y22=1£¬Á½Ê½Ïà¼õÕûÀíµÃ£º
kAC=
=-
=-
£¬
ÉèÏß¶ÎACµÄÖе㣨m£¬n£©£¬¶øm=
=1£¬n=
£¬
ËùÒÔÓëÖ±ÏßAC´¹Ö±µÄÖ±ÏßбÂÊΪk¡äAC=y2+y1=2n£¬
ÔòAC´¹Ö±Æ½·ÖÏß·½³ÌΪy-n=2n£¨x-1£©£¬¼´y=n£¨2x-1£©¾¹ý¶¨µã£¨
£¬0£©£»
£¨3£©ÒÀÌâÒâÖª£¬Ö±ÏßPQµÄбÂÊÏÔÈ»´æÔÚ£¬ÉèÖ±Ïß·½³ÌΪy=kx+m£¬ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬
ÓÉÓÚÖ±Ïß·½³ÌPQÓëÍÖÔ²C1ÏàÇУ¬µãPΪÇе㣬´Ó¶øÓÐ
ÓÉ
µÃ(2k2+1)x12+4kmx1+2(m2-1)=0 £¬
¹Ê¡÷=£¨4km£©2-4¡Á2£¨m2-1£©£¨2k2+1£©=0£¬´Ó¶ø¿ÉµÃm2=1+2k2£¬x1=-
¢Ù£¬
Ö±ÏßPQÓëÔ²C2ÏàÇУ¬Ôò
=r£¬µÃm2=r2£¨1+k2£©¢Ú£¬
ÓÉ¢Ù¢ÚµÃk2=
£¬ÇÒ|PQ|2=|OP|2-|OQ|2=x12+y12-r2=x12+£¨1-
£©-r2
=1+
-r2=1+
-r2=3-r2-
¡Ü3-2
=(
-1)2£¬¼´|PQ|¡Ü
-1£¬
µ±ÇÒ½öµ±r2=
¡Ê(1£¬4)ʱȡµÈºÅ£¬
¹ÊP¡¢QÁ½µãµÄ¾àÀë|PQ|µÄ×î´óֵΪ
-1£®
| x02 |
| 2 |
ÓÒ½¹µãµÄ¾àÀëÓëµ½Ö±Ïßx=2µÄ¾àÀëÖ®±ÈΪ£º
| ||
| |x0-2| |
|
|
| ||
| 2 |
¶øa=
| 2 |
| ||
| 2 |
¹Ê¶¯µãPµ½ÍÖÔ²C1µÄÓÒ½¹µãµÄ¾àÀëÓëµ½Ö±Ïßx=2µÄ¾àÀëÖ®±ÈµÈÓÚÍÖÔ²µÄÀëÐÄÂÊ£»
£¨2£©ÓÉ£¨1£©¿ÉµÃ|AF|=
| ||
| 2 |
| ||
| 2 |
| ||
| 2 |
ÒòΪ2|BF|=|AF|+|CF|£¬
ËùÒÔ
| ||
| 2 |
| ||
| 2 |
| ||
| 2 |
ÒòΪA£¬CÔÚÍÖÔ²ÉÏ£¬¹ÊÓÐ
| x12 |
| 2 |
| x22 |
| 2 |
kAC=
| y2-y1 |
| x2-x1 |
| x2+x1 |
| 2(y2+y1) |
| 1 |
| y2+y1 |
ÉèÏß¶ÎACµÄÖе㣨m£¬n£©£¬¶øm=
| x1+x2 |
| 2 |
| y1+y2 |
| 2 |
ËùÒÔÓëÖ±ÏßAC´¹Ö±µÄÖ±ÏßбÂÊΪk¡äAC=y2+y1=2n£¬
ÔòAC´¹Ö±Æ½·ÖÏß·½³ÌΪy-n=2n£¨x-1£©£¬¼´y=n£¨2x-1£©¾¹ý¶¨µã£¨
| 1 |
| 2 |
£¨3£©ÒÀÌâÒâÖª£¬Ö±ÏßPQµÄбÂÊÏÔÈ»´æÔÚ£¬ÉèÖ±Ïß·½³ÌΪy=kx+m£¬ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬
ÓÉÓÚÖ±Ïß·½³ÌPQÓëÍÖÔ²C1ÏàÇУ¬µãPΪÇе㣬´Ó¶øÓÐ
ÓÉ
|
¹Ê¡÷=£¨4km£©2-4¡Á2£¨m2-1£©£¨2k2+1£©=0£¬´Ó¶ø¿ÉµÃm2=1+2k2£¬x1=-
| 2k |
| m |
Ö±ÏßPQÓëÔ²C2ÏàÇУ¬Ôò
| |m| | ||
|
ÓÉ¢Ù¢ÚµÃk2=
| r2-1 |
| 2-r2 |
| x12 |
| 2 |
=1+
| x12 |
| 2 |
| 2k2 |
| 1+2k2 |
| 2 |
| r2 |
| 2 |
| 2 |
| 2 |
µ±ÇÒ½öµ±r2=
| 2 |
¹ÊP¡¢QÁ½µãµÄ¾àÀë|PQ|µÄ×î´óֵΪ
| 2 |
µãÆÀ£º±¾Ì⿼²éÖ±Ïß·½³Ì¡¢ÍÖÔ²·½³Ì¼°ÆäλÖùØÏµ£¬¿¼²éѧÉú×ÛºÏÔËÓÃËùѧ֪ʶ·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬±¾Ìâ×ÛºÏÐÔÇ¿£¬ÄѶȴó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿