题目内容

11.已知z=1-i(i是虚数单位),$\frac{i}{\overline{z}}$表示的点落在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 由已知z,求出$\overline{z}$,然后代入$\frac{i}{\overline{z}}$,再利用复数代数形式的乘除运算化简去,求出$\frac{i}{\overline{z}}$表示的点的坐标,则答案可求.

解答 解:∵z=1-i,
∴$\overline{z}=1+i$.
则$\frac{i}{\overline{z}}$=$\frac{i}{1+i}=\frac{i(1-i)}{(1+i)(1-i)}=\frac{1+i}{2}=\frac{1}{2}+\frac{1}{2}i$,
∴$\frac{i}{\overline{z}}$表示的点的坐标为:($\frac{1}{2}$,$\frac{1}{2}$),位于第一象限.
故选:A.

点评 本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网