题目内容

若数列{an}中,a1=1,点(an,an+1+1)(n∈N*)在函数f(x)=2x+1的图象上,
(1)求数列{an}的通项公式;
(2)求数列{2nan}的前n项和Sn
分析:(1):将点(an,an+1+1)(n∈N*)代入函数f(x)=2x+1的解析式,整理后发现{an}是公比为2的等比数列,通项公式可求:an=2n-1
(2)2nan=2n•2n-1=n•2n,利用错位相减法求解.
解答:解:(1)∵(an,an+1+1)(n∈N*)在函数f(x)=2x+1的图象上
则an+1+1=2an+1(n∈N*)有an+1=2an
∵a1=1,
∴an≠0,
an+1
an
=2

∴{an}是公比为2的等比数列,通项公式为an=2n-1(n∈N*
(2)2nan=2n•2n-1=n•2n,Sn=2+2•22+3•23+…+(n-1)•2n-1+n•2n①2Sn=22+2•23+3•24+…+(n-1)•2n+n•2n+1
①-②有-Sn=2+22+23+…+2n-n•2n+1
故Sn=(n-1)•2n+1+2(n∈N*
点评:本题主要考查等比数列的判定,性质和数列的求和.对于一些特殊数列的求和可利用错位相减法、裂项法等方法来解决.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网