题目内容

已知向量,向量
(1)化简f(x)的解析式,并求函数的单调递减区间;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,已知f(A)=2012,b=1,△ABC的面积为,求的值.
【答案】分析:(1)利用两个向量的数量积公式,同角三角函数的基本关系,两角和的正弦公式化简f(x)=2sin(2x+)+2011,
由  2kπ+≤2x+≤2kπ+,且 x≠kπ,x≠kπ+,k∈z,求得减区间.
(2)由f(A)=2012,求得 A,根据△ABC的面积求出c,由余弦定理求出 a,据= 求值.
解答:解:(1)=2cos2x+sin2x+ 
=1+cos2x+sin2x+2010=2sin(2x+)+2011.
由  2kπ+≤2x+≤2kπ+,且 x≠kπ,x≠kπ+,k∈z,得 kπ+≤x≤kπ+,且x≠kπ+
∴单调减区间为 (kπ+,kπ+)∪(kπ+,kπ+).
(2)f(A)=2012=2sin(2A+)+2011,∴sin(2A+)=,∴A=
又△ABC的面积为= bcsinA=•1•c•,∴c=2.
∴a==,∴===2010.
点评:本题考查两个向量的数量积公式,同角三角函数的基本关系,两角和的正弦公式,余弦定理的应用,求单调减区间是
解题的难点.
练习册系列答案
相关题目