题目内容

设tanα、tanβ是方程x3+3
3
x+4=0
的两根,且a∈(-
π
2
π
2
)
β∈(-
π
2
π
2
)

则α+β的值为:(  )
A、-
3
B、
π
3
C、
π
3
或-
3
D、-
π
3
3
分析:先求出tanα+tanβ、tanαtanβ的值确定tanα、tanβ的符号,进而可以缩小α和β的范围,再根据两角和的正切公式和求出tan(α+β)的值得到答案.
解答:解:∵tanα、tanβ是方程x3+3
3
x+4=0
的两根
∴tanα+tanβ=-3
3
,tanαtanβ=4
∴tanα<0、tanβ<0∵a∈(-
π
2
π
2
)
β∈(-
π
2
π
2
)

∴α∈(-
π
2
,0),β∈(-
π
2
,0)∴α+β∈(-π,0)
∵tan(α+β)=
tanα+tanβ
1-tanαtanβ
=
-3
3
1-4
=
3

∴α+β=-
3

故选A.
点评:本题主要考查正切函数的两角和的公式.属基础题.但要注意角的范围.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网