题目内容
10.已知AD是△ABC中BC边上的中线,若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,则$\overrightarrow{AD}$=( )| A. | $\frac{1}{2}$($\overrightarrow{a}$-$\overrightarrow{b}$) | B. | -$\frac{1}{2}$($\overrightarrow{a}$-$\overrightarrow{b}$) | C. | $\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow{b}$) | D. | -$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow{b}$) |
分析 利用向量的平行四边形法则即可得出.
解答 解:$\overrightarrow{AD}$=$\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$=$\frac{1}{2}$$(\overrightarrow{a}+\overrightarrow{b})$,
故选:C.
点评 本题考查了向量的平行四边形法则,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
1.已知实数a满足|a|<2,则事件“点M(1,1)与N(2,0)分别位于直线l:ax-2y+1=0两侧”的概率为( )
| A. | $\frac{3}{4}$ | B. | $\frac{1}{8}$ | C. | $\frac{3}{8}$ | D. | $\frac{3}{16}$ |
18.已知函数f(x)=2cos(ωx+φ)+1(ω>0,|φ|<$\frac{π}{2}$),其图象与直线y=3相邻两个交点的距离为$\frac{2π}{3}$,若f(x)>1对?x∈(-$\frac{π}{12}$,$\frac{π}{6}$)恒成立,则φ的取值范围是( )
| A. | [-$\frac{π}{6}$,$\frac{π}{6}$] | B. | [-$\frac{π}{4}$,0] | C. | (-$\frac{π}{3}$,-$\frac{π}{12}$] | D. | [0,$\frac{π}{4}$] |
5.在空间直角坐标系中,A(1,2,3),B(2,2,0),则$\overrightarrow{AB}$=( )
| A. | (1,0,-3) | B. | (-1,0,3) | C. | (3,4,3) | D. | (1,0,3) |
15.若α为锐角且cos($α+\frac{π}{6}$)=$\frac{2}{3}$,则sin($\frac{π}{3}-α$)=( )
| A. | $\frac{2}{3}$ | B. | -$\frac{2}{3}$ | C. | $\frac{\sqrt{5}}{3}$ | D. | -$\frac{\sqrt{5}}{3}$ |
19.已知一个平放的棱长为4的三棱锥内有一小球O(重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,若注入的水的体积是该三棱锥体积的$\frac{7}{8}$时,小球与该三棱锥各侧面均相切(与水面也相切),则球的表面积等于( )
| A. | $\frac{7}{6}$π | B. | $\frac{4}{3}$π | C. | $\frac{2}{3}$π | D. | $\frac{1}{2}$π |