题目内容
已知数列{log2(an-1)} (n∈N*)为等差数列,且a1=3,a3=9.
(1)求数列{an}的通项公式;
(2)证明:
<1.
(1)解 设等差数列{log2(an-1)}的公差为d.
由a1=3,a3=9,
得log2(9-1)=log2(3-1)+2d,则d=1.
所以log2(an-1)=1+(n-1)×1=n,
即an=2n+1.
练习册系列答案
相关题目
题目内容
已知数列{log2(an-1)} (n∈N*)为等差数列,且a1=3,a3=9.
(1)求数列{an}的通项公式;
(2)证明:
<1.
(1)解 设等差数列{log2(an-1)}的公差为d.
由a1=3,a3=9,
得log2(9-1)=log2(3-1)+2d,则d=1.
所以log2(an-1)=1+(n-1)×1=n,
即an=2n+1.