题目内容

(2011•浙江模拟)在数列{an}中,其前n项和Sn与an满足关系式:(t-1)Sn+(2t+1)an=t(t>0,n=1,2,3,…).
(Ⅰ)求证:数列{an}是等比数列;
(Ⅱ)设数列{an}的公比为f(t),已知数列{bn},b1=1,bn+1=3f(
1bn
)  (n=1,2,3,…)
,求b1b2-b2b3+b3b4-b4b5+…+(-1)n+1bnbn+1的值.
分析:(Ⅰ) 当n=1时,(t-1)S1+(2t+1)a1=t,可求的首项a1=
1
3
;当n≥2时,(t-1)Sn+(2t+1)an=t,(t-1)Sn-1+(2t+1)an-1=t,两式相减可得(t-1)an+(2t+1)an-(2t+1)an-1=0,从而有
an
an-1
=
2t+1
3t
,故可知数列{an}是以
2t+1
3t
为公比,
1
3
为首项的等比数列;
(II)由(Ⅰ)可知,f(t)=
2t+1
3t
(t>0)
bn+1=3f(
1
bn
)
,则bn+1=bn+2,从而可得数列{bn}是以2为公差,首项为1的等差数列,从而bn=2n-1由于涉及(-1)n+1,故分n为偶数及奇数分类求和.
解答:证明:(Ⅰ) 当n=1时,(t-1)S1+(2t+1)a1=t,∴a1=
1
3

当n≥2时,(t-1)Sn+(2t+1)an=t,(t-1)Sn-1+(2t+1)an-1=t
∴(t-1)an+(2t+1)an-(2t+1)an-1=0
∴3tan=(2t+1)an-1,t>0
an
an-1
=
2t+1
3t
a1=
1
3

∴数列{an}是以
2t+1
3t
为公比,
1
3
为首项的等比数列;
解:(II)由(Ⅰ)可知,f(t)=
2t+1
3t
(t>0)
bn+1=3f(
1
bn
)
,则bn+1=bn+2
所以,数列{bn}是以2为公差,首项为1的等差数列
即bn=2n-1
①当n为奇数时,
b1b2-b2b3+b3b4-b4b5+…+(-1)n+1bnbn+1
=b1b2+b3(b4-b2)+b5(b6-b4)+…+bn(bn+1-bn-1
=3+4(b3+b5+…+bn
=2n2+2n-1
②当n为偶数时,
b1b2-b2b3+b3b4-b4b5+…+(-1)n+1bnbn+1
=b2(b1-b3)+b4(b3-b5)+…+bn(bn-1-bn+1
=-4(b2+b4+…+bn
=-(2n2+2n)
所以,原式=
2n2+2n-1       n为奇数
-(2n2+2n)       n为偶数
点评:本题以数列递推式为载体,考查等比数列的定义,考查等差数列的通项,同时考查了分类讨论的数学思想,综合性强.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网