题目内容
(2011•浙江模拟)在数列{an}中,其前n项和Sn与an满足关系式:(t-1)Sn+(2t+1)an=t(t>0,n=1,2,3,…).
(Ⅰ)求证:数列{an}是等比数列;
(Ⅱ)设数列{an}的公比为f(t),已知数列{bn},b1=1,bn+1=3f(
) (n=1,2,3,…),求b1b2-b2b3+b3b4-b4b5+…+(-1)n+1bnbn+1的值.
(Ⅰ)求证:数列{an}是等比数列;
(Ⅱ)设数列{an}的公比为f(t),已知数列{bn},b1=1,bn+1=3f(
| 1 | bn |
分析:(Ⅰ) 当n=1时,(t-1)S1+(2t+1)a1=t,可求的首项a1=
;当n≥2时,(t-1)Sn+(2t+1)an=t,(t-1)Sn-1+(2t+1)an-1=t,两式相减可得(t-1)an+(2t+1)an-(2t+1)an-1=0,从而有
=
,故可知数列{an}是以
为公比,
为首项的等比数列;
(II)由(Ⅰ)可知,f(t)=
(t>0),bn+1=3f(
),则bn+1=bn+2,从而可得数列{bn}是以2为公差,首项为1的等差数列,从而bn=2n-1由于涉及(-1)n+1,故分n为偶数及奇数分类求和.
| 1 |
| 3 |
| an |
| an-1 |
| 2t+1 |
| 3t |
| 2t+1 |
| 3t |
| 1 |
| 3 |
(II)由(Ⅰ)可知,f(t)=
| 2t+1 |
| 3t |
| 1 |
| bn |
解答:证明:(Ⅰ) 当n=1时,(t-1)S1+(2t+1)a1=t,∴a1=
当n≥2时,(t-1)Sn+(2t+1)an=t,(t-1)Sn-1+(2t+1)an-1=t
∴(t-1)an+(2t+1)an-(2t+1)an-1=0
∴3tan=(2t+1)an-1,t>0
∴
=
,a1=
∴数列{an}是以
为公比,
为首项的等比数列;
解:(II)由(Ⅰ)可知,f(t)=
(t>0),bn+1=3f(
),则bn+1=bn+2
所以,数列{bn}是以2为公差,首项为1的等差数列
即bn=2n-1
①当n为奇数时,
b1b2-b2b3+b3b4-b4b5+…+(-1)n+1bnbn+1
=b1b2+b3(b4-b2)+b5(b6-b4)+…+bn(bn+1-bn-1)
=3+4(b3+b5+…+bn)
=2n2+2n-1
②当n为偶数时,
b1b2-b2b3+b3b4-b4b5+…+(-1)n+1bnbn+1
=b2(b1-b3)+b4(b3-b5)+…+bn(bn-1-bn+1)
=-4(b2+b4+…+bn)
=-(2n2+2n)
所以,原式=
| 1 |
| 3 |
当n≥2时,(t-1)Sn+(2t+1)an=t,(t-1)Sn-1+(2t+1)an-1=t
∴(t-1)an+(2t+1)an-(2t+1)an-1=0
∴3tan=(2t+1)an-1,t>0
∴
| an |
| an-1 |
| 2t+1 |
| 3t |
| 1 |
| 3 |
∴数列{an}是以
| 2t+1 |
| 3t |
| 1 |
| 3 |
解:(II)由(Ⅰ)可知,f(t)=
| 2t+1 |
| 3t |
| 1 |
| bn |
所以,数列{bn}是以2为公差,首项为1的等差数列
即bn=2n-1
①当n为奇数时,
b1b2-b2b3+b3b4-b4b5+…+(-1)n+1bnbn+1
=b1b2+b3(b4-b2)+b5(b6-b4)+…+bn(bn+1-bn-1)
=3+4(b3+b5+…+bn)
=2n2+2n-1
②当n为偶数时,
b1b2-b2b3+b3b4-b4b5+…+(-1)n+1bnbn+1
=b2(b1-b3)+b4(b3-b5)+…+bn(bn-1-bn+1)
=-4(b2+b4+…+bn)
=-(2n2+2n)
所以,原式=
|
点评:本题以数列递推式为载体,考查等比数列的定义,考查等差数列的通项,同时考查了分类讨论的数学思想,综合性强.
练习册系列答案
相关题目