题目内容

如图所示,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.
(1)求证:AC⊥BC1
(2)求证:AC1∥平面CDB1
分析:(1)利用勾股定理证明AC⊥BC,证明C1C⊥底面ABC,可得AC⊥CC1 ,由线面垂直的判定定理证得AC⊥平面BCC1B1 ,从而证得AC⊥BC1
(2)设BC1∩B1C=O,由三角形的中位线性质可得OD∥AC1,从而利用线面平行的判定定理证明AC1∥平面CDB1
解答:证明:(1)∵AC2+BC2=AB2,∴AC⊥BC.
又∵C1C∥AA1,AA1⊥底面ABC,∴C1C⊥底面ABC,∴AC⊥CC1
又BC∩CC1=C,∴AC⊥平面BCC1B1
而BC1?平面BCC1B1,∴AC⊥BC1
(2)设BC1∩B1C=O,则O为BC1的中点,连接OD,
∵D为AB的中点,∴OD∥AC1
又∵OD?平面CDB1,AC1?平面CDB1
∴AC1∥平面CDB1
点评:本题考查证明线线垂直、线面垂直、线面平行的方法,空间中直线与直线间的位置关系,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网