题目内容

设abc≠0,“ac>0”是“曲线ax2+by2=c为椭圆”的( )
A.充分非必要条件
B.必要非充分条件
C.充分必要条件
D.既非充分又非必要条件
【答案】分析:要判断:“ac>0”是“曲线ax2+by2=c为椭圆”的什么条件,我们要在前提条件abc≠0的情况下,先判断,“ac>0”时“曲线ax2+by2=c是否为椭圆”,然后在判断“曲线ax2+by2=c为椭圆”时,“ac>0”是否成立,然后根据充要条件的定义进行总结.
解答:解:若曲线ax2+by2=c为椭圆,则一定有abc≠0,ac>0;
反之,当abc≠0,ac>0时,可能有a=b,方程表示圆,
故“abc≠0,ac>0”是“曲线ax2+by2=c为椭圆”的必要非充分条件.
故选B
点评:判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网