题目内容
数列{an}是公比为q的等比数列,a1=1,an+2=| an+1+an | 2 |
(1)求公比q;
(2)令bn=nan,求{bn}的前n项和Sn.
分析:(1)根据等比数列的性质可知an+2=anq2,an+1=anq,分别代入an+2=
中,得到关于q的方程,求出方程的解即可得到q的值;
(2)根据首项为1和求出的两个q的值分别写出等比数列的通项公式,代入bn=nan中即可得到{bn}的通项公式,然后分别根据等差数列和等比数列的前n项和的公式求出{bn}的前n项和Sn的值即可.
| an+1+an |
| 2 |
(2)根据首项为1和求出的两个q的值分别写出等比数列的通项公式,代入bn=nan中即可得到{bn}的通项公式,然后分别根据等差数列和等比数列的前n项和的公式求出{bn}的前n项和Sn的值即可.
解答:解:(1)∵{an}为公比为q的等比数列,an+2=
(n∈N*),
∴an•q2=
,即2q2-q-1=0,
解得q=-
或q=1;
(2)当an=1时,bn=n,Sn=1+2+3+…+n=
,
当an=(-
)n-1时,bn=n•(-
)n-1,
Sn=1+2•(-
)+3•(-
)2+…+(n-1)•(-
)n-2+n•(-
)n-1①,
-
Sn=(-
)+2•(-
)2+…+(n-1)•(-
)n-1+n(-
)n②,
①-②得
Sn=1+(-
) +(-
)2+…+(-
)n-1-n(-
)n
=
-n•(-
)n=
-
(-
)n-
(-
)nSn=
-
(-
)n-
(-
)n.
| an+1+an |
| 2 |
∴an•q2=
| anq+an |
| 2 |
解得q=-
| 1 |
| 2 |
(2)当an=1时,bn=n,Sn=1+2+3+…+n=
| n(n+1) |
| 2 |
当an=(-
| 1 |
| 2 |
| 1 |
| 2 |
Sn=1+2•(-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
①-②得
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=
1-(-
| ||
1+
|
| 1 |
| 2 |
| 2 |
| 3 |
| 2 |
| 3 |
| 1 |
| 2 |
| n |
| • |
| 1 |
| 2 |
| 4 |
| 9 |
| 4 |
| 9 |
| 1 |
| 2 |
|
| • |
| 1 |
| 2 |
点评:此题考查了等比数列的性质,考查了错位相减法求数列的和,是一道综合题.
练习册系列答案
相关题目