ÌâÄ¿ÄÚÈÝ
|
| 16 |
| 5 |
£¨1£©ÊÔÇóÒ©Á¿·åÖµ£¨yµÄ×î´óÖµ£©Óë´ï·åʱ¼ä£¨yÈ¡×î´óֵʱ¶ÔÓ¦µÄxÖµ£©£»
£¨2£©Èç¹ûÿºÁÉýѪҺÖк¬Ò©Á¿²»ÉÙÓÚ1΢¿ËʱÖÎÁƼ²²¡ÓÐЧ£¬ÄÇô³ÉÈ˰´¹æ¶¨¼ÁÁ¿·þÓøÃÒ©Ò»´ÎºóÄÜά³Ö¶à³¤µÄÓÐЧʱ¼ä£¿£¨¾«È·µ½0.01Сʱ£©
·ÖÎö£º£¨1£©ÓÉÇúÏß¹ýµã(
£¬
)£¬´úÈëÇúÏß·½³Ì£¬Çó³öaÖµ£¬È·¶¨º¯Êý¹ØÏµÊ½£»ÔÙ·Ö±ðÇó³ö·Ö¶Îº¯Êý¸÷¶ÎÉϵÄ×î´óÖµ½øÐбȽϣ¬´Ó¶øµÃ³öÒ©Á¿·åÖµ£¨yµÄ×î´óÖµ£©Óë´ï·åʱ¼ä£»
£¨2£©°Ñy=1·Ö±ð´úÈëÁ½¸öº¯Êý¹ØÏµÊ½Çóʱ¼ä£¬ÔÙÇóʱ¼ä²î£¬¼´¿ÉµÃ³ö·þÓøÃÒ©Ò»´ÎºóÄÜά³Ö¶à³¤µÄÓÐЧʱ¼ä£®
| 1 |
| 2 |
| 16 |
| 5 |
£¨2£©°Ñy=1·Ö±ð´úÈëÁ½¸öº¯Êý¹ØÏµÊ½Çóʱ¼ä£¬ÔÙÇóʱ¼ä²î£¬¼´¿ÉµÃ³ö·þÓøÃÒ©Ò»´ÎºóÄÜά³Ö¶à³¤µÄÓÐЧʱ¼ä£®
½â´ð£º½â£º£¨1£©ÓÉÇúÏß¹ýµã(
£¬
)£¬¿ÉµÃ
=
£¬¹Êa=8¡£¨2·Ö£©
µ±0£¼x£¼1ʱ£¬y=
£¼
=4£¬¡£¨3·Ö£©
µ±x¡Ý1ʱ£¬Éè2x-1=t£¬¿ÉÖªt¡Ý1£¬y=
=
¡Ü
=4£¨µ±ÇÒ½öµ±t=1ʱ£¬y=4£©¡£¨5·Ö£©
×ÛÉÏ¿ÉÖªymax=4£¬ÇÒµ±yÈ¡×î´óֵʱ£¬¶ÔÓ¦µÄxֵΪ1
ËùÒÔÒ©Á¿·åֵΪ4mg£¬´ï·åʱ¼äΪ1Сʱ£® ¡£¨6·Ö£©
£¨2£©µ±0£¼x£¼1ʱ£¬ÓÉ
=1£¬¿ÉµÃx2-8x+1=0£¬
½âµÃx=4¡À
£¬ÓÖ4+
£¾1£¬¹Êx=4-
£® ¡£¨8·Ö£©
µ±x¡Ý1ʱ£¬Éè2x-1=t£¬Ôòt¡Ý1£¬
ÓÉ
=1£¬¿ÉµÃ
=1£¬½âµÃt=4¡À
£¬
ÓÖt¡Ý1£¬¹Êt=4+
£¬ËùÒÔ2x-1=4+
£¬
¿ÉµÃx=log2(4+
)+1£®¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ ¡£¨12·Ö£©
ÓÉͼÏóÖªµ±y¡Ý1ʱ£¬¶ÔÓ¦µÄxµÄȡֵ·¶Î§ÊÇ[4-
£¬log2(4+
)+1]£¬
¡ßlog2(4+
)+1-(4-
)¡Ö3.85£¬
ËùÒÔ³ÉÈ˰´¹æ¶¨¼ÁÁ¿·þÓøÃÒ©Ò»´ÎºóÄÜά³Ö´óÔ¼3.85СʱµÄÓÐЧʱ¼ä£® ¡£¨14·Ö£©
| 1 |
| 2 |
| 16 |
| 5 |
a¡Á
| ||
|
| 16 |
| 5 |
µ±0£¼x£¼1ʱ£¬y=
| 8x |
| x2+1 |
| 8x |
| 2x |
µ±x¡Ý1ʱ£¬Éè2x-1=t£¬¿ÉÖªt¡Ý1£¬y=
| 8¡Á2x-1 |
| 4x-1+1 |
| 8t |
| t2+1 |
| 8t |
| 2t |
×ÛÉÏ¿ÉÖªymax=4£¬ÇÒµ±yÈ¡×î´óֵʱ£¬¶ÔÓ¦µÄxֵΪ1
ËùÒÔÒ©Á¿·åֵΪ4mg£¬´ï·åʱ¼äΪ1Сʱ£® ¡£¨6·Ö£©
£¨2£©µ±0£¼x£¼1ʱ£¬ÓÉ
| 8x |
| x2+1 |
½âµÃx=4¡À
| 15 |
| 15 |
| 15 |
µ±x¡Ý1ʱ£¬Éè2x-1=t£¬Ôòt¡Ý1£¬
ÓÉ
| 8¡Á2x-1 |
| 4x-1+1 |
| 8t |
| t2+1 |
| 15 |
ÓÖt¡Ý1£¬¹Êt=4+
| 15 |
| 15 |
¿ÉµÃx=log2(4+
| 15 |
ÓÉͼÏóÖªµ±y¡Ý1ʱ£¬¶ÔÓ¦µÄxµÄȡֵ·¶Î§ÊÇ[4-
| 15 |
| 15 |
¡ßlog2(4+
| 15 |
| 15 |
ËùÒÔ³ÉÈ˰´¹æ¶¨¼ÁÁ¿·þÓøÃÒ©Ò»´ÎºóÄÜά³Ö´óÔ¼3.85СʱµÄÓÐЧʱ¼ä£® ¡£¨14·Ö£©
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁ˺¯ÊýÄ£Ð͵ÄÑ¡ÔñÓëÓ¦Óã¬ÒÔ¼°·Ö¶Îº¯ÊýÇó½âÎöʽºÍÖ¸Êý²»µÈʽµÄÇó½â£¬Í¬Ê±¿¼²éÁ˼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿