题目内容

16.已知角α的终边在直线y=-$\frac{4}{3}$x上,求sinα,cosα,tanα的值.

分析 由角α的终边在直线y=-$\frac{4}{3}$x上,对α所在象限分类讨论,取特殊点的坐标,由三角函数定义可得sinα,cosα,tanα的值.

解答 解:直线y=-$\frac{4}{3}$x,
当角α的终边在第二象限时,在α的终边上取点P(-3,4),
则|OP|=5,
∴sinα=$\frac{4}{5}$,cosα=$-\frac{3}{5}$,tanα=-$\frac{4}{3}$;
当角α的终边在第四象限时,在α的终边上取点(3,-4),
则|OP|=5,
∴sinα=-$-\frac{4}{5}$,cosα=$\frac{3}{5}$,tanα=-$\frac{4}{3}$.

点评 本题考查三角函数的定义,涉及分类讨论思想的应用,属基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网