题目内容
【题目】已知椭圆
的中心在原点,焦点在
轴上,短轴长和焦距都等于2,
是椭圆上的一点,且
在第一象限内,过
且斜率等于
的直线与椭圆
交于另一点
,点
关于原点的对称点为
.
![]()
(1)求椭圆
的方程;
(2)证明:直线
的斜率为定值;
(3)求
面积的最大值.
【答案】(1)
(2)详见解析;(3)![]()
【解析】
(1)设椭圆的方程,根据椭圆的性质即可求得
和
的值,求得椭圆方程;
(2)利用点差法即可求证直线
的斜率为定值;
(3)设直线
的方程,由
,将直线
的方程代入椭圆方程,利用韦达定理及弦长公式及基本不等式即可求得
面积的最大值.
(1)由题意可设椭圆
的方程为
,
,则
,
所以
的方程为
;
(2)设
,
,
,
,则
,
,直线
的斜率
,
由
,两式相减,
,
由直线
,所以
,
直线
的斜率为定值;
(3)因为
,
关于原点对称,所以
,
由(1)可知
的斜率
,设
方程为
且
,
到
的距离
由
,整理得:
,
所以
,![]()
所以
,
,
,
当且仅当
,即
时等号成立,所以
面积的最大值为
.
练习册系列答案
相关题目
【题目】某市2011年至2017年新开楼盘的平均销售价格(单位:千元/平方米)的统计数据如下表:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份代号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
销售价格 | 3 | 3.4 | 3.7 | 4.5 | 4.9 | 5.3 | 6 |
(1)求
关于x的线性回归方程;
(2)利用(1)中的回归方程,分析2011年至2017年该市新开楼盘平均销售价格的变化情况,并预测该市2019年新开楼盘的平均销售价格。
附:参考公式:
,
,其中
为样本平均值。
参考数据:
.