题目内容

(2012•道里区三模)已知数列{an}的前n项和为Sn,满足Sn=n2an-n2(n-1),且a1=
1
2

(1)令bn=
n+1
n
Sn
,确定bn与bn-1(n≥2)的关系;
(2)求{an}的通项.
分析:(1)由Sn=n2an-n2(n-1),且a1=
1
2
,用迭代法能求出(n2-1)Sn=n2Sn-1+n2(n-1),再由bn=
n+1
n
Sn
,能确定bn与bn-1(n≥2)的关系.
(2)由(1)知bn-b1=n+(n-1)+…+2=
n(n+1)
2
-1
,故bn=
n(n+1)
2
,由此求出Sn,从而能求出{an}的通项公式.
解答:解:(1)∵Sn=n2an-n2(n-1),且a1=
1
2

∴当n≥2时,有an=Sn-Sn-1
Sn=n2(Sn-Sn-1)-n2(n-1),
即(n2-1)Sn=n2Sn-1+n2(n-1)
bn=
n+1
n
S
n
,∴Sn=
n
n+1
b
n

从而bn-bn-1=n.
(2)由(1)知
bn-b1=n+(n-1)+…+2=
n(n+1)
2
-1

b1=2S1=1,
bn=
n(n+1)
2

Sn=
n
n+1
bn
=
n
n+1
n(n+1)
2
=
n2
2

a1=S1=
1
2

an=Sn-Sn-1=
n2
2
-
(n-1)2
2
=
2n-1
2

当n=1时,
2n-1
2
=
1
2

an=
2n-1
2
点评:本题考查数列的递推公式的应用,解题时要认真审题,仔细解答,注意迭代法和等价转化思想的灵活运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网