ÌâÄ¿ÄÚÈÝ

1£®ÉèµÈ²îÊýÁÐ{an}Âú×㣺$\frac{{{{sin}^2}{a_2}-{{cos}^2}{a_2}+{{cos}^2}{a_2}{{cos}^2}{a_7}-{{sin}^2}{a_2}{{sin}^2}{a_7}}}{{sin£¨{a_4}+{a_5}£©}}=1$£¬¹«²î$d¡Ê£¨-\frac{1}{2}£¬0£©$Èôµ±ÇÒ½öµ±n=11ʱ£¬ÊýÁÐ{an}µÄǰnÏîºÍSnÈ¡µÃ×î´óÖµ£¬ÔòÊ×Ïîa1µÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®$£¨\frac{10}{11}¦Ð£¬¦Ð£©$B£®$[\frac{10}{11}¦Ð£¬¦Ð£©$C£®$[¦Ð£¬\frac{11}{10}¦Ð£©$D£®$£¨¦Ð£¬\frac{11}{10}¦Ð£©$

·ÖÎö ÀûÓÃÈý½Çº¯ÊýµÄ±¶½Ç¹«Ê½¡¢»ý»¯ºÍ²îÓëºÍ²î»¯»ý¹«Ê½»¯¼òÒÑÖªµÄµÈʽ£¬¸ù¾Ý¹«²îdµÄ·¶Î§Çó³ö¹«²îµÄÖµ£¬´úÈëǰnÏîºÍ¹«Ê½ºóÀûÓöþ´Îº¯ÊýµÄ¶Ô³ÆÖáµÄ·¶Î§Çó½âÊ×Ïîa1ȡֵ·¶Î§£®

½â´ð ½â£ºÓÉ$\frac{{{{sin}^2}{a_2}-{{cos}^2}{a_2}+{{cos}^2}{a_2}{{cos}^2}{a_7}-{{sin}^2}{a_2}{{sin}^2}{a_7}}}{{sin£¨{a_4}+{a_5}£©}}=1$£¬
µÃ$\frac{si{n}^{2}{a}_{2}£¨1-si{n}^{2}{a}_{7}£©-co{s}^{2}{a}_{2}£¨1-co{s}^{2}{a}_{7}£©}{sin£¨{a}_{4}+{a}_{5}£©}$=$\frac{si{n}^{2}{a}_{2}co{s}^{2}{a}_{7}-co{s}^{2}{a}_{2}si{n}^{2}{a}_{7}}{sin£¨{a}_{4}+{a}_{5}£©}$
=$\frac{£¨sin{a}_{2}cos{a}_{7}-cos{a}_{2}sin{a}_{7}£©£¨sin{a}_{2}cos{a}_{7}+cos{a}_{2}sin{a}_{7}£©}{sin£¨{a}_{4}+{a}_{5}£©}$
=$\frac{sin£¨{a}_{2}-{a}_{7}£©sin£¨{a}_{2}+{a}_{7}£©}{sin£¨{a}_{4}+{a}_{5}£©}$=sin£¨a2-a7£©=sin£¨-5d£©=1
¡àsin£¨5d£©=-1£®
¡ßd¡Ê£¨-$\frac{1}{2}$£¬0£©£¬¡à5d¡Ê£¨-$\frac{5}{2}$£¬0£©£¬
Ôò5d=$-\frac{¦Ð}{2}$£¬d=-$\frac{¦Ð}{10}$£®
ÓÉSn=na1+$\frac{n£¨n-1£©d}{2}$=na1-$\frac{n£¨n-1£©}{2}¡Á\frac{¦Ð}{10}$=-$\frac{{n}^{2}}{20}$¦Ð+£¨a1+$\frac{¦Ð}{20}$£©n£®
¶Ô³ÆÖá·½³ÌΪn=$\frac{10}{¦Ð}$£¨a1+$\frac{¦Ð}{20}$£©£¬
ÓÉÌâÒâµ±ÇÒ½öµ±n=11ʱ£¬ÊýÁÐ{an}µÄǰnÏîºÍSnÈ¡µÃ×î´óÖµ£¬
¡à$\frac{21}{2}$£¼$\frac{10}{¦Ð}$£¨a1+$\frac{¦Ð}{20}$£©£¼$\frac{23}{2}$£¬½âµÃ£º¦Ð£¼a1£¼$\frac{11¦Ð}{10}$£®
¡àÊ×Ïîa1µÄȡֵ·¶Î§ÊÇ£¨¦Ð£¬$\frac{11¦Ð}{10}$£©£®
¹ÊÑ¡£ºD£®

µãÆÀ ±¾Ì⿼²éÁ˵ȲîÊýÁеÄͨÏʽ£¬¿¼²éÁËÈý½Çº¯ÊýµÄÓйع«Ê½£¬¿¼²éÁ˵ȲîÊýÁеÄǰnÏîºÍ£¬ÑµÁ·Á˶þ´Îº¯ÊýÈ¡µÃ×îÖµµÃÌõ¼þ£¬¿¼²éÁ˼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø