题目内容

长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点.
(1)求证:直线AE⊥平面A1D1E;
(2)求三棱锥A-A1D1E的体积;
(3)求异面直线A1E与AD1所成角的大小.
分析:(1)根据已知中长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点,结合长方体的几何特征,我们可得AE⊥A1E,AE⊥A1D1,结合线面垂直的判定定理即可得到AE⊥平面A1D1E;
(2)由(1)的结论,我们可得AE即为三棱锥A-A1D1E的高,根据已知求出三棱锥的底面积,代入棱锥体积公式,即可求出三棱锥A-A1D1E的体积;
(3)取CC1的中点F,连接D1F,则可得∠AD1F即为求异面直线A1E与AD1所成角,在△AD1F中,可求得结论.
解答:(1)证明:∵长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点
∴AE=A1E=
2
,AA1=2,
∴AA12=AE2+A1E2
∴AE⊥A1E
又∵D1A1⊥平面A1EA,AE?平面A1EA
∴AE⊥A1D1,又D1A1∩A1E=A1
∴AE⊥平面A1D1E;
(2)解:由(1)中AE⊥平面A1D1E,
∴VA-A1D1E=
1
3
•S△A1D1E•AE=
1
3
×
1
2
×1×
2
×
2
=
1
3

(3)解:取CC1的中点F,连接D1F,

则A1E∥D1F,所以∠AD1F即为求异面直线A1E与AD1所成角.
∵AB=BC=1,AA1=2,∴D1F=
2
,AF=
3
,AD1=
5

D1F2+AF2=AD12
∴D1F⊥AF
在△AD1F中,可求得tan∠AD1F=
3
2
=
6
2

∴∠AD1F=arctan
6
2
点评:本题主要考查空间角,体积的计算,线面垂直,考查了空间想象能力、计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网