题目内容

已知f1(x)=sinx+cosx,记f2(x)=f′1(x),f3(x)=f′2(x),…,fn(x)=f′n-1(x),( n∈N*,n≥2).则f1
π
4
)+f2
π
4
)+…+f2010
π
4
)=______.
f2(x)=f1′(x)=cosx-sinx,
f3(x)=(cosx-sinx)′=-sinx-cosx,
f4(x)=-cosx+sinx,f5(x)=sinx+cosx,
以此类推,可得出fn(x)=fn+4(x)
又∵f1(x)+f2(x)+f3(x)+f4(x)=0,
∴f1
π
4
)+f2
π
4
)++f2009
π
4
+f2010(
π
4
)
=f1
π
4
+f2(
π
4
)
=
2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网