题目内容
【题目】双曲线
=1(a>0,b>0)的左、右焦点分别为F1、F2离心率为e.过F2的直线与双曲线的右支交于A、B两点,若△F1AB是以A为直角顶点的等腰直角三角形,则e2的值是( )
A.1+2 ![]()
B.3+2 ![]()
C.4﹣2 ![]()
D.5﹣2 ![]()
【答案】D
【解析】解:设|AF1|=|AB|=m,则|BF1|=
m,|AF2|=m﹣2a,|BF2|=
m﹣2a,
∵|AB|=|AF2|+|BF2|=m,
∴m﹣2a+
m﹣2a=m,
∴4a=
m,∴|AF2|=(1﹣
)m,
∵△AF1F2为Rt三角形,∴|F1F2|2=|AF1|2+|AF2|2
∴4c2=(
﹣
)m2 ,
∵4a=
m
∴4c2=(
﹣
)×8a2 ,
∴e2=5﹣2
故选D.
【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了
月
日至
月
日的每天昼夜温差与实验室每天每
颗种子中的发芽数,得到如下资料:
日期 |
|
|
|
|
|
温差 |
|
|
|
|
|
发芽数 |
|
|
|
|
|
该农科所确定的研究方案是:先从这
组数据中选取
组,用剩下的
组数据求线性回归方程,再对被选取的
组数据进行检验.
(1)求选取的
组数据恰好是不相邻两天数据的概率;
(2)若选取的是
月
日与
月
日的数据,请根据
月
日至
月
日的数据求出
关于
的线性回归方程
;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过
颗.则认为得到的线性回归方程是可靠的.试问(2)中所得到的线性回归方程是可靠的吗?
附:回归直线的斜率和截距的最小二乘估计公式分别为:
,
.
【题目】某仪器经过检验合格才能出厂,初检合格率为
:若初检不合格,则需要进行调试,经调试后再次对其进行检验;若仍不合格,作为废品处理,再检合格率为
.每台仪器各项费用如表:
项目 | 生产成本 | 检验费/次 | 调试费 | 出厂价 |
金额(元) | 1000 | 100 | 200 | 3000 |
(Ⅰ)求每台仪器能出厂的概率;
(Ⅱ)求生产一台仪器所获得的利润为1600元的概率(注:利润
出厂价
生产成本
检验费
调试费);
(Ⅲ)假设每台仪器是否合格相互独立,记
为生产两台仪器所获得的利润,求
的分布列和数学期望.