题目内容
已知向量| a |
| 3 |
| 2 |
| 3 |
| 2 |
| b |
| 1 |
| 2 |
| 1 |
| 2 |
(1)当x=
| π |
| 4 |
| a |
| b |
| a |
| b |
(2)求f(x)=m|
| a |
| b |
| a |
| b |
分析:(1)先求出
•
及|
+
|的三角表达式,利用三角恒等变换公式化简后再代入x=
求得两向量的内积与两向量和的模的值;
(2)由题设条件f(x)=m|
+
|-
•
=-2cos2
+2mcos
-1,此式是关于cos
的二次函数,故可令t=cos
(0≤t≤1),换元,再由二次函数的知识求最值
| a |
| b |
| a |
| b |
| π |
| 4 |
(2)由题设条件f(x)=m|
| a |
| b |
| a |
| b |
| x |
| 2 |
| x |
| 2 |
| x |
| 2 |
| x |
| 2 |
解答:解:(1)∵
=(cos
x,sin
x),
=(cos
x,sin
x)
∴
•
=cos
xcos
x+sin
xsin
x=cos(
x-
x)=cosx
∴x=
时,
•
=
,
又|
+
|2=
2+
2+2
•
=2+2cosx
∴x=
时,|
+
|=
(2)∵x∈[0,π],∴0≤cos
≤1
∴f(x)=m|
+
|-
•
=2m|cos
|-cosx=-2cos2
+2mcos
-1
令t=cos
(0≤t≤1)则f(x)=-2t2+2mt-1=-2(t-
)2+
-1
∴当
>1即m>2时,此时t=1,f(x)max=2m-3
当0≤
≤1即0≤m≤2时,此时t=
,f(x)max=
-1
当
<0即m<0时,此时t=0,f(x)max=-1
∴f(x)max=
| a |
| 3 |
| 2 |
| 3 |
| 2 |
| b |
| 1 |
| 2 |
| 1 |
| 2 |
∴
| a |
| b |
| 3 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
∴x=
| π |
| 4 |
| a |
| b |
| ||
| 2 |
又|
| a |
| b |
| a |
| b |
| a |
| b |
∴x=
| π |
| 4 |
| a |
| b |
2+
|
(2)∵x∈[0,π],∴0≤cos
| x |
| 2 |
∴f(x)=m|
| a |
| b |
| a |
| b |
| x |
| 2 |
| x |
| 2 |
| x |
| 2 |
令t=cos
| x |
| 2 |
| m |
| 2 |
| m2 |
| 2 |
∴当
| m |
| 2 |
当0≤
| m |
| 2 |
| m |
| 2 |
| m2 |
| 2 |
当
| m |
| 2 |
∴f(x)max=
|
点评:本题考查平面向量数量积的运算,解题的关键是熟练掌握数量积的运算公式,以及三角恒等变换公式,本题是一个三角与向量结合的综合题,其解题的特点是变形灵活,考查灵活变形进行计算的能力
练习册系列答案
相关题目