题目内容
已知函数y=log2
•log2
(2≤x≤4)
(1)当x=4
时,求y的值.
(2)令t=log2x,求y关于t的函数关系式.
(3)求该函数的值域.
| x |
| 4 |
| x |
| 2 |
(1)当x=4
| 2 |
| 3 |
(2)令t=log2x,求y关于t的函数关系式.
(3)求该函数的值域.
(1)x=4
=2
时,log2x=
∴y=log2
•log2
=(log2x-log24)•(log2x-log22)
=(log2x-2)•(log2x-1)
=-
•
=-
(2)若t=log2x,(2≤x≤4)
则1≤t≤2,
则y=log2
•log2
=(log2x-2)•(log2x-1)
=(t-2)•(t-1)
=t2-3t+2(1≤t≤2)
(3)∵y=t2-3t+2的图象是开口朝上,且以t=
为对称轴的抛物线
又∵1≤t≤2
∴当t=
时,ymin=-
当t=1或2时,ymax=0
故函数的值域是[-
,0]
| 2 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
∴y=log2
| x |
| 4 |
| x |
| 2 |
=(log2x-log24)•(log2x-log22)
=(log2x-2)•(log2x-1)
=-
| 2 |
| 3 |
| 1 |
| 3 |
| 2 |
| 9 |
(2)若t=log2x,(2≤x≤4)
则1≤t≤2,
则y=log2
| x |
| 4 |
| x |
| 2 |
=(log2x-2)•(log2x-1)
=(t-2)•(t-1)
=t2-3t+2(1≤t≤2)
(3)∵y=t2-3t+2的图象是开口朝上,且以t=
| 3 |
| 2 |
又∵1≤t≤2
∴当t=
| 3 |
| 2 |
| 1 |
| 4 |
当t=1或2时,ymax=0
故函数的值域是[-
| 1 |
| 4 |
练习册系列答案
相关题目