题目内容

15.从集合{1,2,3,4,5,6,7)中任取五个不同元素构成数列al,a2,a3,a4,a5,其中a3是al和a5的等差中项,且a2<a4,则这样的数列共有(  )
A.96个B.108个C.120个D.216个

分析 a3是a1和a5的等差中项,可得2a3=a1+a5,从集合{1,2,3,4,5,6,7}中任取五个不同元素,其中3个满足a3是a1和a5的等差中项的共有18组:1,2,3;3,2,1;….其中对于每一组等差数列,且a2<a4的可有:${C}_{4}^{2}$=6组满足.即可得出.

解答 解:∵a3是a1和a5的等差中项,
∴2a3=a1+a5
从集合{1,2,3,4,5,6,7}中任取五个不同元素,
其中3个满足a3是a1和a5的等差中项的共有18组:1,2,3;3,2,1;1,3,5;5,3,1;1,4,7;7,4,1;2,3,4;4,3,2;2,4,6;6,4,2;3,4,5;5,4,3;3,5,7;7,5,3;4,5,6;6,5,4;5,6,7;7,6,5.
其中对于每一组等差数列,且a2<a4的可有:${C}_{4}^{2}$=6组满足.
∴这样的数列共有18×6=108组.
故选:B.

点评 本题考查了等差数列的性质、分类讨论方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网