题目内容

已知甲、乙、丙等6人.
(1)这6人同时参加一项活动,必须有人去,去几人自行决定,共有多少种不同的去法?
(2)这6人同时参加6项不同的活动,每项活动限1人参加,其中甲不参加第一项活动,乙不参加第三项活动,共有多少种不同的安排方法?
(3)这6人同时参加4项不同的活动,求每项活动至少有1人参加的概率.
(1)分别求出这6个人只去1个人、只去2个人、只去3个人、只去4个人、只去5个人,6的人全去的方法数,
分别为
C16
C26
C36
C46
C56
C66

故共有
C16
+
C26
+
C36
+
C46
+
C56
+
C66
=26-1=63 种方法.
(2)所有的安排方法共有
A66
种,其中甲参加第一项活动的方法有
A55
种,乙参加第三项活动的方法有
A55
种,
甲参加第一项活动而且乙参加第三项活动的方法有
A44
种,
故甲不参加第一项活动且乙不参加第三项活动的不同的安排方法有
A66
-2
A55
+
A44
=720-240+24=504 种.
(3)这6人同时参加4项不同的活动,每项活动至少有1人参加,若各项活动的人数为3、1、1、1时,有
C36
A44
种方法,
若各项活动的人数为2、2、1、1,则有
1
2
C26
C24
A44
种方法,
故满足条件的方法数为 (
C36
+
1
2
C26
C24
)•
A44
=65×24种.
而所有的安排方法共有 46 种,故每项活动至少有1人参加的概率为
65×24
46
=
195
512
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网