题目内容
【题目】已知在极坐系中,点
绕极点
顺时针旋转角
得到点
.以
为原点,极轴为
轴非负半轴,并取相同的单位长度建立平面直角坐标系,曲线
绕
逆时针旋转
得到曲线
.
(1)求曲线
的直角坐标方程;
(2)点
的极坐标为
,直线
过点
且与曲线
交于
两点,求
的最小值.
【答案】(1)
;(2)14.
【解析】
(1)求得点
绕极点
顺时针旋转
得到点
,代入曲线
上,结合极坐标与直角坐标的互化公式,即可求求解;
(2)求得
的直角坐标,设
的参数方程为
(
为参数),代入
,利用参数的几何意义和三角函数性质,即可求解.
(1)设
为曲线
是任意一点,
则点
绕极点
顺时针旋转
得到点
在曲线
上,
又由
的直线坐标方程为
,代入可得
,
整理
,所以
,
即曲线
的方程为
.
(2)由点
的极坐标为
,可得
的直角坐标为
,
设
的参数方程为
(
为参数),
代入
,整理后可得
,
所以
,
当且仅当
或
时取等号,此时
,符合条件,
故
的最小值为14.
练习册系列答案
相关题目
【题目】2019年郑开国际马拉松比赛,于2019年3月31日在郑州、开封举行.某学校本着“我运动,我快乐,我锻炼,我提高”精神,积极组织学生参加比赛及相关活动,为了了解学生的参与情况,从全校学生中随机抽取了150名学生,对是否参与的情况进行了问卷调查,统计数据如下:
会参与 | 不会参与 | |
男生 | 60 | 40 |
女生 | 20 | 30 |
(1)根据上表说明,能否有97.5%的把握认为参与马拉松赛事与性别有关?
(2)现从参与问卷调查且参与赛事的学生中,采用按性别分层抽样的方法选取8人参加2019年马拉松比赛志愿者宣传活动,
①求男、女学生各选取多少人;
②若从这8人中随机选取2人到校广播站开展2019年赛事宣传介绍,求恰好选到2名男生的概率.
附:参考公式:
,其中![]()
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |