题目内容
| 1 |
| 16 |
| 1 |
| 16 |
| i |
| 2j+1 |
| i |
| 2j+1 |
分析:“直角三角形数阵”,寻找所需的公差和公比,确定具体数的位置,求出解来.
解答:解:①由题意知,第一列成等差数列,公差d=
-
=
,∴a41=
+
=1;
第二列成等差数列,公差d=
-
=
,∴a42=
+
=
;
又第四行成等比数列,公比q=
=
,∴a43=
×
=
;
∴第三列是等差数列,公差d=
-
2=
;
②∵aij是第i行第j个数,由已知ai1=a11+(i-1)•d=
+(i-1)×
=
,ai2=a22+(i-2)•d=
+(i-2)×
=
;
又第i行成等比数列,公比q=
=
,∴aij=ai1•qj-1=
•(
)j-1=
;
故答案为:
,
.
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 4 |
| 3 |
| 4 |
| 1 |
| 4 |
第二列成等差数列,公差d=
| 3 |
| 8 |
| 1 |
| 4 |
| 1 |
| 8 |
| 3 |
| 8 |
| 1 |
| 8 |
| 1 |
| 2 |
又第四行成等比数列,公比q=
| ||
| 1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
∴第三列是等差数列,公差d=
| 1 |
| 4 |
| 3 |
| 16 |
| 1 |
| 16 |
②∵aij是第i行第j个数,由已知ai1=a11+(i-1)•d=
| 1 |
| 4 |
| 1 |
| 4 |
| i |
| 4 |
| 1 |
| 4 |
| 1 |
| 8 |
| i |
| 8 |
又第i行成等比数列,公比q=
| ||
|
| 1 |
| 2 |
| i |
| 4 |
| 1 |
| 2 |
| i |
| 2j+1 |
故答案为:
| 1 |
| 16 |
| i |
| 2j+1 |
点评:本题考查了等差、等比数列的性质和应用,解题时应仔细观察,寻找数量间的相互关系,是易错题.
练习册系列答案
相关题目