题目内容
43、已知向量a=(2,-1),b=(-1,m),c=(-1,2),若(a+b)∥c,则m=
-1
分析:先求出两个向量的和的坐标,再根据向量平行的充要条件写出关于m的等式,解方程得到要求的数值,注意公式不要用错公式.
解答:解:∵a+b=(1,m-1),
∵(a+b)∥c
∴1×2-(m-1)×(-1)=0,
所以m=-1
故答案为:-1
∵(a+b)∥c
∴1×2-(m-1)×(-1)=0,
所以m=-1
故答案为:-1
点评:掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题,能用坐标形式的充要条件解决求值问题.
练习册系列答案
相关题目