题目内容

判断函数y=
x+2
x+1
单调区间并证明.
函数y=
x+2
x+1
的定义域为(-∞,-1)∪(-1,+∞).
f(x)在(-∞,-1)内是减函数,f(x)在(-1,+∞)内也是减函数.
证明f(x)在(-1,+∞)内是减函数.
取x1,x2∈(-1,+∞),且x1<x2,那么 f(x1)-f(x2)=
x2-x1
(x1+1) (x2+1)

∵x2-x1>0,(x1-1)(x2-1)>0,
∴f(x1)-f(x2)>0,
即f(x)在(-1,+∞)内是减函数.
同理可证f(x)在(-∞,-1)内是减函数.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网