题目内容

下列判断正确的是
②③④
②③④
(把正确的序号都填上).
①函数y=|x-1|与y=
x-1,x>1
1-x,x<1
是同一函数;
②函数y=
x-2
x-1
在(1,+∞)内单调递增;
③函数f(x)=log2(
x2+1
+x)
是奇函数;
④函数y=-ex与y=e-x的图象关于坐标原点对称.
分析:对于①,函数y=|x-1|与y=
x-1,x>1
1-x,x<1
不是同一函数,因为x=1时,y=
x-1,x>1
1-x,x<1
无定义;
②y=
x-2
x-1
=1-
1
x-1
在(1,+∞)内单调递增;
③由f(-x)+f(x)=0可判断③正确;
④函数y=-ex与y=e-x的图象关于坐标原点对称,正确.
解答:解:对于①因为x=1时,y=
x-1,x>1
1-x,x<1
无定义,
∴函数y=|x-1|与y=
x-1,x>1
1-x,x<1
不是同一函数,即可排除A;
对于②,y=
x-2
x-1
=1-
1
x-1
在(1,+∞)内单调递增,故②正确;
对于③,∵f(-x)+f(x)=log2(
x2+1
-x)
+log2(
x2+1
+x)
=log21=0,
∴f(-x)=-f(x),x∈R,
∴函数f(x)=log2(
x2+1
+x)
是奇函数,即③正确;
对于④,令g(x)=-ex,h(x)=e-x
∵g(-x)=-e-x=-e-x=-h(x),
∴函数y=-ex与y=e-x的图象关于坐标原点对称,正确.
综上所述,②③④正确.
故答案为:②③④.
点评:本题考查函数的图象,考查函数奇偶性的判断与单调性的分析,考查函数的对称性,考查综合运用函数的性质解决问题的能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网