题目内容
9.函数$f(x)=\frac{1}{{\sqrt{x+3}}}+{log_2}(6-x)$的定义域是( )| A. | (6,+∞) | B. | [-3,6) | C. | (-3,+∞) | D. | (-3,6) |
分析 根据二次根式以及对数函数的性质,求出函数的定义域即可.
解答 解:由题意得:
$\left\{\begin{array}{l}{x+3>0}\\{6-x>0}\end{array}\right.$,解得:-3<x<6,
故函数的定义域是(-3,6),
故选:D.
点评 本题考查了求函数的定义域问题,考查对数函数的性质,是一道基础题.
练习册系列答案
相关题目
4.2017年某公司举办产品创新大赛,经评委会初评,有两个优秀方案(编号分别为1,2)入选,组委会决定请车间100名经验丰富的技工对两个方案进行等级(等级从高到低依次为A、B、C、D、E)评价,评价结果统计如表:
(1)若从对1号创新方案评价为C、D的技工中按分层抽样的方法抽取4人,其中从评价为C的技工中抽取了3人,求a,b,c的值;
(2)若从两个创新方案评价为C、D的评价表中各抽取10%进行分析,再从中选取2份进行详细研究,求选出的2份评价表中至少有1份评价为D的概率.
| A | B | C | D | E | |
| 1号 | 15 | 35 | a | b | 10 |
| 2号 | 7 | 33 | 20 | 2b | c |
(2)若从两个创新方案评价为C、D的评价表中各抽取10%进行分析,再从中选取2份进行详细研究,求选出的2份评价表中至少有1份评价为D的概率.
1.已知角α的终边过点P(-4,3),则2sinα的值是( )
| A. | $\frac{3}{5}$ | B. | $-\frac{4}{5}$ | C. | $-\frac{8}{5}$ | D. | $\frac{6}{5}$ |
18.袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是( )
| A. | 至少有一个白球;都是白球 | B. | 至少有一个白球;至少有一个红球 | ||
| C. | 至少有一个白球;红、黑球各一个 | D. | 恰有一个白球;一个白球一个黑球 |