题目内容
13.数列{an}满足a1=1,a2=2,an+2=2an+1-an+2(1)设bn=an+1-an,证明{bn}等差数列
(2){an}通项公式
(3)求{$\frac{{a}_{n}-{n}^{2}}{3n}$}的前n项和.
分析 (1)把已知数列递推式变形,可得(an+2-an+1)-(an+1-an)=2,即bn+1-bn=2,由此可得{bn}等差数列;
(2)由(1)中的等差数列求得{bn}的通项公式,再由累加法求{an}通项公式;
(3)把{an}通项公式代入数列{$\frac{{a}_{n}-{n}^{2}}{{3}^{n}}$},再由错位相减法求其前n项和.
解答 (1)证明:由an+2=2an+1-an+2,
得(an+2-an+1)-(an+1-an)=2,
即bn+1-bn=2,
又b1=a2-a1=2-1=1,
∴数列{bn}是以1为首项,以2为公差的等差数列;
(2)解:由(1)得bn=1+2(n-1)=2n-1,
∴an+1-an=2n-1,
则a2-a1=2×1-1,a3-a2=2×2-1,…,an-an-1=2(n-1)-1(n≥2),
累加得:an-a1=2[1+2+…+(n-1)]-(n-1)=$2×\frac{n(n-1)}{2}-(n-1)=(n-1)^{2}$,
∴${a}_{n}=(n-1)^{2}+1$(n≥2),
已知n=1时上式成立,
∴${a}_{n}=(n-1)^{2}+1$;
(3)解:$\frac{{a}_{n}-{n}^{2}}{{3}^{n}}=\frac{{n}^{2}-2n+2-{n}^{2}}{{3}^{n}}=\frac{-2n+2}{{3}^{n}}$,
设数列{$\frac{{a}_{n}-{n}^{2}}{{3}^{n}}$}的前n项和为Tn,
则${T}_{n}=\frac{0}{{3}^{1}}+\frac{-2}{{3}^{2}}+\frac{-4}{{3}^{3}}+…+\frac{-2n+2}{{3}^{n}}$,
∴$\frac{1}{3}{T}_{n}=\frac{0}{{3}^{2}}+\frac{-2}{{3}^{3}}+…+\frac{-2n+4}{{3}^{n}}+\frac{-2n+2}{{3}^{n+1}}$,
∴$\frac{2}{3}{T}_{n}=\frac{-2}{{3}^{2}}+\frac{-2}{{3}^{3}}+…+\frac{-2}{{3}^{n}}-\frac{-2n+2}{{3}^{n+1}}$=$-2•\frac{\frac{1}{9}(1-\frac{1}{{3}^{n-1}})}{1-\frac{1}{3}}-\frac{-2n+2}{{3}^{n+1}}$=$\frac{1}{{3}^{n}}-\frac{1}{3}-\frac{-2n+2}{{3}^{n+1}}$,
∴${T}_{n}=\frac{2n+1}{2•{3}^{n}}-\frac{1}{2}$.
点评 本题考查数列递推式,考查了等差关系的确定,训练了累加法求数列的前n项和,考查错位相减法求数列的和,是中档题.
| A. | 3,5 | B. | 5,3 | C. | 3,3 | D. | 5,5 |
| A. | 2E(X) | B. | 0 | C. | E(X) | D. | 无法求 |
| A. | $\frac{2015}{2016}$ | B. | $\frac{2016}{2017}$ | C. | $\frac{2014}{2015}$ | D. | $\frac{2017}{2018}$ |