题目内容

设等差数列{an}的公差d是2,前n项的和为Sn,则
lim
n→∞
a2n
-n2
Sn
=______.
由公差d=2,得到an=a1+2(n-1)=2n+a1-2,Sn=na1+
n(n-1)
2
×2=n2+n(a1-1)
lim
n→∞
a2n
-n2
Sn
=
lim
n→∞
3n2+4(a1-2)n+(a1-2)2
n2+n(a1-1)
=
lim
n→∞
3+
4(a1-2)
n
+
(a1-2)2
n2
1+
a1-1
n
=3
故答案为3.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网