题目内容
设等差数列{an}的公差d是2,前n项的和为Sn,则
=______.
| lim |
| n→∞ |
| ||
| Sn |
由公差d=2,得到an=a1+2(n-1)=2n+a1-2,Sn=na1+
×2=n2+n(a1-1)
则
=
=
=3
故答案为3.
| n(n-1) |
| 2 |
则
| lim |
| n→∞ |
| ||
| Sn |
| lim |
| n→∞ |
| 3n2+4(a1-2)n+(a1-2)2 |
| n2+n(a1-1) |
| lim |
| n→∞ |
3+
| ||||
1+
|
故答案为3.
练习册系列答案
相关题目