题目内容
如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1B1C1均为60°,平面AA1C1C⊥平面ABCD,
(Ⅰ)求证:BD⊥AA1;
(Ⅱ)求二面角D-AA1-C的余弦值;
(Ⅲ)在直线CC1上是否存在点P,使BP∥平面DA1C1,若存在,求出点P的位置,若不存在,请说明理由。
(Ⅰ)求证:BD⊥AA1;
(Ⅱ)求二面角D-AA1-C的余弦值;
(Ⅲ)在直线CC1上是否存在点P,使BP∥平面DA1C1,若存在,求出点P的位置,若不存在,请说明理由。
|
解:设BD与AC交于O,则BD⊥AC,连结A1O, |
练习册系列答案
相关题目