题目内容

已知数列{an}中,a1=5且且n∈N*).
(I)证明:数列为等差数列;
(II)求数列{an-1}的前n项和Sn
【答案】分析:(Ⅰ)要证明数列为等差数列,只要证明=d(d 为常数)即可
(Ⅱ)由等差数列的通项公式可求,进而可求an-1,利用错位相减可求数列的和
解答:(I)证明:∵a1=5且且n∈N*




∴数列是以2为首项,以1为公差的等差数列
(II)由(I)可得,=2+(n-1)=n+1
∴an-1=(n+1)•2n
∴Sn=2•21+3•22+…+(n+1)•2n
 2Sn=2•22+3•23+…+n•2n+(n+1)•2n+1
两式相减可得,-Sn=4+22+23+…+2n-(n+1)•2n+1
=
=4+2n+1-4-(n+1)•2n+1

点评:本题主要考查了数列的递推公式在数列的通项公式的求解中的应用,等差数列的通项公式的求解及错位相减求和方法的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网