题目内容
【题目】已知正整数数列
满足对任意的正整数
均有
,证明:存在无穷多个正整数对
(
),使得
.
【答案】见解析
【解析】
用反证法.
假设所有满足
的正整数对
(
)只有有限多个,
即存在正整数
使得所有满足要求的
都小于
.
下面用数学归纳法证明:对正整数
,
存在有限集
和由2013个不小于
的连续正整数组成的集合
,
使得
中至少有
个元素可以被
中的某些元素整除.
当
时,集合
,
符合要求.
当
时,假定集合
、
满足要求.
对
,令
,
其中,
中包含了2013个不小于
的连续的正整数.
事实上,它们也不小于
中的最大元素.
又由于
中至少有
个元素能被
中的某些元素整除,
因此,对
,
也能被
中的某些元素整除.
由
,且
中的元素不小于
,知存在某些
,使得
.
由
中的元素不小于
中的最大元素,知
.
从而,由
的定义,知
中没有元素能整除
.
故
中至少有
个元素能被
中的某些元素整除(
中至少有
个元素能被
中的某些元素整除,
能被其自身整除).
因此,令
即可完成归纳证明.
令
.于是,有2013元集
中至少有2014个数能被
中的某些元素整除,矛盾.
故对任意的正整数
,均存在
及
,使得
.
因此,存在无穷多个正整数对
(
),使得
.
【题目】国际奥委会将于2017年9月15日在秘鲁利马召开130次会议决定2024年第33届奥运会举办地,目前德国汉堡,美国波士顿等申办城市因市民担心赛事费用超支而相继退出,某机构为调查我国公民对申办奥运会的态度,选了某小区的100位居民调查结果统计如下:
支持 | 不支持 | 合计 | |
年龄不大于50岁 | 80 | ||
年龄大于50岁 | 10 | ||
合计 | 70 | 100 |
(1)根据已知数据,把表格数据填写完整;
(2)能否在犯错误的概率不超过5%的前提下认为不同年龄与支持申办奥运有关?
(3)已知在被调查的年龄大于50岁的支持者中有6名女性,其中2名是女教师.现从这6名女性中随机抽取2名,求恰有1名女教师的概率.
附:
,
,
| 0.100 | 0.050 | 0.025 | 0.010 |
| 2.706 | 3.841 | 5.024 | 6.635 |
【题目】已知函数
的定义域为[-1,5],部分对应值如下表,
的导函数
的图象如图所示,下列关于
的命题正确的是( )
|
| 0 | 4 | 5 |
| 1 | 2 | 2 | 1 |
![]()
A.函数
的极大值点为0,4;
B.函数
在[0,2]上是减函数;
C.如果当
时,
的最大值是2,那么
的最大值为4;
D.函数
的零点个数可能为0、1、2、3、4个.