题目内容
14.已知公比不等于1的等比数列{an},满足:a3=3,S3=9,其中Sn为数列{an}的前n项和.(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2$\frac{3}{a_{2n+3}}$,若cn=$\frac{4}{b_n•b_{n+1}}$,求数列{cn}的前n项和Tn.
分析 (Ⅰ)设数列{an}的公比为q,从而得方程3(1+$\frac{1}{q}$+$\frac{1}{{q}^{2}}$)=9,从而解得;
(Ⅱ)化简a2n+3=3•$\frac{1}{{2}^{2n}}$,从而可得cn=$\frac{4}{b_n•b_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,从而求和.
解答 解:(Ⅰ)设数列{an}的公比为q,
则有3(1+$\frac{1}{q}$+$\frac{1}{{q}^{2}}$)=9,
解得,q=1(舍去)或q=-$\frac{1}{2}$,
故an=3•(-$\frac{1}{2}$)n-3;
(Ⅱ)a2n+3=3•$\frac{1}{{2}^{2n}}$,
故bn=log2$\frac{3}{a_{2n+3}}$=2n,
故cn=$\frac{4}{b_n•b_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
故Tn=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$
=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.
点评 本题考查了等比数列与等差数列的应用,同时考查了对数运算的应用及裂项求和法的应用.
练习册系列答案
相关题目
11.A,B,C是△ABC的三个内角,若$\overrightarrow{m}$=(sin2$\frac{B+C}{2}$,1),$\overrightarrow{n}$=(-2,cos2A+1),且$\overrightarrow{m}$⊥$\overrightarrow{n}$,则cosA=( )
| A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -$\frac{1}{2}$或1 | D. | $\frac{1}{2}$或0 |
6.小明、小王、小张、小李4名同学排成一纵队表演节目,其中小明不站排头,小张不站排尾,则不同的排法共有( )种.
| A. | 14 | B. | 18 | C. | 12 | D. | 16 |