题目内容
数列{an}的各项均为正值,a1,对任意n∈N*,
-1=4an(an+1),bn=log2(an+1)都成立.
(1)求数列{an},{bn}的通项公式;
(2)当k>7且k∈N*时,证明对任意n∈N*都有
+
+
+…+
>
成立.
| a | 2 n+1 |
(1)求数列{an},{bn}的通项公式;
(2)当k>7且k∈N*时,证明对任意n∈N*都有
| 1 |
| bn |
| 1 |
| bn+1 |
| 1 |
| bn+2 |
| 1 |
| bnk-1 |
| 3 |
| 2 |
分析:(1)由an+12-1=4an(an+1),得(an+1+2an+1)(an+1-2an-1)=0,由数列{an}的各项为正值,知an+1+2an+1>0,故an+1=2an+1,再由bn=log2(an+1),能求出数列{an},{bn}的通项公式.
(2)设S=
+
+
+…+
=
+
+
+…+
,由2S=(
+
)+(
+
)+(
+
)+…+(
+
),所以2S>
+
+
+…+
=
,由此能够证明对任意n∈N*都有
+
+
+…+
>
成立.
(2)设S=
| 1 |
| bn |
| 1 |
| bn+1 |
| 1 |
| bn+2 |
| 1 |
| bnk-1 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| nk-1 |
| 1 |
| n |
| 1 |
| nk-1 |
| 1 |
| n+1 |
| 1 |
| nk-2 |
| 1 |
| n+2 |
| 1 |
| nk-3 |
| 1 |
| nk-1 |
| 1 |
| n |
| 4 |
| n+nk-1 |
| 4 |
| n+1+nk-2 |
| 4 |
| n+2+nk-3 |
| 4 |
| nk-1+n |
| 4n(k-1) |
| n+nk-1 |
| 1 |
| bn |
| 1 |
| bn+1 |
| 1 |
| bn+2 |
| 1 |
| bnk-1 |
| 3 |
| 2 |
解答:解:(1)由an+12-1=4an(an+1),
得(an+1+2an+1)(an+1-2an-1)=0,
数列{an}的各项为正值,an+1+2an+1>0,
∴an+1=2an+1,
∴an+1+1=2(an+1),
∵a1+1=2≠0,
∴数列{an+1}为等比数列.
∴an+1=(a1+1)•2n-1=2n,an=2n-1,
即为数列{an}的通项公式.
∵bn=log2(an+1),
∴bn=log2(2n-1+1)=n.
(2)设S=
+
+
+…+
=
+
+
+…+
,
∴2S=(
+
)+(
+
)+(
+
)+…+(
+
),
当x>0,y>0时,x_y≥2
,
+
≥2
,
∴(x+y)(
+
)≥4,
∴
+
≥
,当且仅当x=y时等号成立.
在2S=(
+
)+(
+
)+(
+
)+…+(
+
),中,k>7,n>0,
n+1,n+2,…,nk-1全为正,
所以2S>
+
+
+…+
=
,
∴S>
>
=2(1-
)>2(1-
)=
,
故对任意n∈N*都有
+
+
+…+
>
成立.
得(an+1+2an+1)(an+1-2an-1)=0,
数列{an}的各项为正值,an+1+2an+1>0,
∴an+1=2an+1,
∴an+1+1=2(an+1),
∵a1+1=2≠0,
∴数列{an+1}为等比数列.
∴an+1=(a1+1)•2n-1=2n,an=2n-1,
即为数列{an}的通项公式.
∵bn=log2(an+1),
∴bn=log2(2n-1+1)=n.
(2)设S=
| 1 |
| bn |
| 1 |
| bn+1 |
| 1 |
| bn+2 |
| 1 |
| bnk-1 |
=
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| nk-1 |
∴2S=(
| 1 |
| n |
| 1 |
| nk-1 |
| 1 |
| n+1 |
| 1 |
| nk-2 |
| 1 |
| n+2 |
| 1 |
| nk-3 |
| 1 |
| nk-1 |
| 1 |
| n |
当x>0,y>0时,x_y≥2
| xy |
| 1 |
| x |
| 1 |
| y |
|
∴(x+y)(
| 1 |
| x |
| 1 |
| y |
∴
| 1 |
| x |
| 1 |
| y |
| 4 |
| x+y |
在2S=(
| 1 |
| n |
| 1 |
| nk-1 |
| 1 |
| n+1 |
| 1 |
| nk-2 |
| 1 |
| n+2 |
| 1 |
| nk-3 |
| 1 |
| nk-1 |
| 1 |
| n |
n+1,n+2,…,nk-1全为正,
所以2S>
| 4 |
| n+nk-1 |
| 4 |
| n+1+nk-2 |
| 4 |
| n+2+nk-3 |
| 4 |
| nk-1+n |
| 4n(k-1) |
| n+nk-1 |
∴S>
| 2(k-1) | ||
1+k-
|
| 2(k-1) |
| k+1 |
| 2 |
| k+1 |
| 2 |
| 7+1 |
| 3 |
| 2 |
故对任意n∈N*都有
| 1 |
| bn |
| 1 |
| bn+1 |
| 1 |
| bn+2 |
| 1 |
| bnk-1 |
| 3 |
| 2 |
点评:本题考查数列的通项公式的求法,考查不等式的证明,考查数列、不等式知识,考查化归与转化、分类与整合的数学思想,培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识.解题时要注意构造法的合理运用.
练习册系列答案
相关题目