题目内容
(文科同学做)在锐角△ABC中,边a,b是方程x2-2
x+2=0的两根,角A、B满足:2sin(A+B)-
=0,求角C,边c的长度.
| 3 |
| 3 |
分析:依题意可求得a,b及C,再由余弦定理即可求得c.
解答:解:∵在锐角△ABC中,边a,b是方程x2-2
x+2=0的两根,
∴a+b=2
,ab=2,
又2sin(A+B)-
=0,sin(A+B)=sin(π-C)=sinC,
∴sinC=
,又△ABC为锐角三角形,
∴C=
,cosC=
.
∴c2=a2+b2-2abcosC
=(a+b)2-2ab-2abcosC
=12-4-2×2×
=6.
| 3 |
∴a+b=2
| 3 |
又2sin(A+B)-
| 3 |
∴sinC=
| ||
| 2 |
∴C=
| π |
| 3 |
| 1 |
| 2 |
∴c2=a2+b2-2abcosC
=(a+b)2-2ab-2abcosC
=12-4-2×2×
| 1 |
| 2 |
=6.
点评:本题考查两角和与差的正弦函数,着重考查余弦定理的应用,考查分析与运算能力,属于中档题.
练习册系列答案
相关题目