题目内容

如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,且∠DAB=60°.侧面PAD为正三角形,其所在的平面垂直于底面ABCD,G为AD边的中点.
(1)求证:BG⊥平面PAD;
(2)求三棱锥G-CDP的体积.
考点:棱柱、棱锥、棱台的体积,直线与平面垂直的判定
专题:空间位置关系与距离
分析:(1)连结BD,由已知得△ABD为正三角形,BG⊥AD,由此能证明BG⊥平面PAD.
(2)由已知得PG⊥AD,PG⊥平面ABCD,由VG-CDP=VP-CDG,利用等积法能求出三棱锥G-CDP的体积.
解答: (1)证明:连结BD.
因为ABCD为棱形,且∠DAB=60°,所以△ABD为正三角形.(1分)
又G为AD的中点,所以BG⊥AD.(2分)
又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,(3分)
∴BG⊥平面PAD.(4分)
(2)解:因为G为正三角形PAD的边AD的中点,所以PG⊥AD.
又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,
所以PG⊥平面ABCD.(5分)
因为正三角形PAD的边长为2,所以PG=
3
.(6分)
在△CDG中,CD=2,DG=1,∠CDG=120°,
所以S△CDG=
1
2
×1×2×
3
2
=
3
2
.(7分)
故VG-CDP=VP-CDG=
1
3
×
3
×
3
2
=
1
2
.(8分)
点评:本题考查直线与平面垂直的证明,考查三棱锥的体积的求法,是中档题,解题时要注意空间思维能力的培养.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网