题目内容
(2012•成都一模)已知等差数列{an}中,公差d>0,a2=9,且a1a3=65.数列前n项和Sn满足2Sn=3n+1-3(n∈Nn)
(I)求数列{an}和{bn}的通项公式;
(II)设cn=anbn,求数列{cn)的前n项和Tn
(III)设dn=bn+(-1)n-1(2n+1+2)λ(n∈N*),若d2k+1>d2k对k∈N*恒成立,求λ的取值范围.
(I)求数列{an}和{bn}的通项公式;
(II)设cn=anbn,求数列{cn)的前n项和Tn
(III)设dn=bn+(-1)n-1(2n+1+2)λ(n∈N*),若d2k+1>d2k对k∈N*恒成立,求λ的取值范围.
分析:(I)利用a2=9,a1a3=65可求数列{an}的通项公式;利用2Sn=3n+1-3,再写一式,两式相减,可求数列{bn}的通项公式;
(II)利用错位相减法,可求数列{cn)的前n项和Tn;
(III)dn=bn+(-1)n-1(2n+1+2)λ(n∈N*),d2k+1>d2k对k∈N*恒成立,等价于λ>-
对k∈N*恒成立,求出右边的最大值,即可求λ的取值范围.
(II)利用错位相减法,可求数列{cn)的前n项和Tn;
(III)dn=bn+(-1)n-1(2n+1+2)λ(n∈N*),d2k+1>d2k对k∈N*恒成立,等价于λ>-
| 32k |
| 3×22k+2 |
解答:解:(I)∵a2=9,a1a3=65,∴(9-d)(9+d)=65,∴d=±4
∵d>0,∴d=4,∴a1=5,∴an=4n+1;
∵2Sn=3n+1-3,∴n≥2时,bn=Sn+1-Sn=3n
又n=1时,b1=3,∴bn=3n;
(II)cn=anbn=(4n+1)•3n
∴Tn=5×3+9×32+…+(4n+1)•3n①
∴3Tn=5×32+9×33+…+(4n-3)•3n+(4n+1)•3n+1②
②-①整理可得2Tn=-15-4×32-4×33-…-4•3n+(4n+1)•3n+1=4+(4n-1)•3n+1
∴Tn=
+
×3n+1
(III)∵dn=bn+(-1)n-1(2n+1+2)λ(n∈N*),d2k+1>d2k对k∈N*恒成立,
∴32k+1+(-1)2k(22k+2+2)λ>32k+(-1)2k-1(22k+1+2)λ
∴λ>-
对k∈N*恒成立,
令f(k)=-
,则f(k+1)-f(k)=
-
=
<0
∴函数是减函数,∴k=1时,f(k)max=-
∴λ>-
.
∵d>0,∴d=4,∴a1=5,∴an=4n+1;
∵2Sn=3n+1-3,∴n≥2时,bn=Sn+1-Sn=3n
又n=1时,b1=3,∴bn=3n;
(II)cn=anbn=(4n+1)•3n
∴Tn=5×3+9×32+…+(4n+1)•3n①
∴3Tn=5×32+9×33+…+(4n-3)•3n+(4n+1)•3n+1②
②-①整理可得2Tn=-15-4×32-4×33-…-4•3n+(4n+1)•3n+1=4+(4n-1)•3n+1
∴Tn=
| 3 |
| 2 |
| 4n-1 |
| 2 |
(III)∵dn=bn+(-1)n-1(2n+1+2)λ(n∈N*),d2k+1>d2k对k∈N*恒成立,
∴32k+1+(-1)2k(22k+2+2)λ>32k+(-1)2k-1(22k+1+2)λ
∴λ>-
| 32k |
| 3×22k+2 |
令f(k)=-
| 32k |
| 3×22k+2 |
| 32k |
| 3×22k+2 |
| 32k+2 |
| 3×22k+2+2 |
| -15×62k-16×32k |
| (3×22k+2)(3×22k+2+2) |
∴函数是减函数,∴k=1时,f(k)max=-
| 9 |
| 14 |
∴λ>-
| 9 |
| 14 |
点评:本题考查数列的通项,考查错位相减法,考查恒成立问题,分离参数,确定函数的最值是关键.
练习册系列答案
相关题目