题目内容
15.已知复数z=$\frac{3-4i}{2-i}$,$\overline z$是z的共轭复数,则$|{\overrightarrow{\overline z}}$|为( )| A. | $\frac{{5\sqrt{5}}}{3}$ | B. | $\sqrt{5}$ | C. | $\frac{{\sqrt{5}}}{5}$ | D. | $2\sqrt{5}$ |
分析 求出z,$\overline z$,即可得出结论.
解答 解:由z=$\frac{3-4i}{2-i}$=$\frac{(3-4i)(2+i)}{5}$=2-i,∴$\overline z$=2+i,
∴|$\overline z$|=$\sqrt{5}$,
故选B.
点评 本题考查复数的运算,考查学生的计算能力,正确化简是关键.
练习册系列答案
相关题目
3.已知偶函数y=f(x)对于任意的x∈[0,$\frac{π}{2}$)满足f′(x)cosx+f(x)sinx>0,(其中f′(x)是函数f(x)的导函数),则下列不等式中成立的是( )
| A. | $\sqrt{2}$f(-$\frac{π}{3}$)<f($\frac{π}{4}$) | B. | $\sqrt{2}$f(-$\frac{π}{3}$)<f(-$\frac{π}{4}$) | C. | f(0)$>\sqrt{2}$f(-$\frac{π}{4}$) | D. | f($\frac{π}{4}$)$<\sqrt{3}$f($\frac{π}{3}$) |
10.设{an}是首项为a1,公比为q的等比数列,则“a1q>0”是“{an}为递增数列”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
20.集合M={x|x2<2x},N={x|log2(x-1)≤0},则M∩N=( )
| A. | (1,2) | B. | (1,2] | C. | [1,2) | D. | (0,2) |
4.若集合M={x∈N|x<6},N={x|x2-11x+18<0},则M∩N等于( )
| A. | {3,4,5} | B. | {x|2<x<6} | C. | {x|3≤x≤5} | D. | {2,3,4,5} |
16.
某商店老板设计了如下有奖游戏方案:顾客只要花10元钱,即可参加有奖游戏一次.游戏规则如下:棋子从点M开始沿箭头方向跳向N,每次只跳一步(即一个箭头),当下一步有方向选择时,跳的方法必须通过投掷骰子决定,方案如下:当掷出的点数为1时,沿$\overrightarrow{MD}$方向跳一步;当掷出的点数为2,4,6时,沿$\overrightarrow{ME}$方向跳一步;当掷出的点数为3,5时,沿$\overrightarrow{MA}$方向跳一步;奖励标准如表:
若该店平均每天有200人参加游戏,按每月30天计算.则该店开展此游戏每月获利的期望(均值)为2083元
(精确到1元)
| 从M到N用的步数 | 2 | 3 | 4 |
| 奖励金额(元) | 100 | 10 | 5 |
(精确到1元)