题目内容
分析:由三视图及题设条件知,此几何体为一个三棱锥,其高为1,底面是直角边长度为1的等腰直角三角形,故先求出底面积,再由体积公式求解其体积即可.
解答:
解:由题设条件,此几何几何体为一个三棱锥,
如图红色的部分.
其高已知为1,底面是直角边长度为1的等腰直角三角形,
底面积是
×1×1=
其体积是
×
×1=
.
故选A.
如图红色的部分.
其高已知为1,底面是直角边长度为1的等腰直角三角形,
底面积是
| 1 |
| 2 |
| 1 |
| 2 |
其体积是
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 6 |
故选A.
点评:本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是.三视图的投影规则是:“主视、俯视 长对正;主视、左视高平齐,左视、俯视 宽相等”.三视图是新课标的新增内容,在以后的高考中有加强的可能.
练习册系列答案
相关题目