题目内容

已知向量
a
=(cos75°,sin75°),
b
=(cos15°,sin15°),则
a
-
b
b
的夹角为(  )
分析:由诱导公式先化简向量的坐标,进而可得(
a
-
b
)•
b
和|
a
-
b
|,|
b
|
的值,而cos<
a
-
b
b
>=
(
a
-
b
)•
b
|
a
-
b
||
b
|
,代入化简可得.
解答:解:∵cos75°=cos(90°-15°)=sin15°,
sin75°=sin(90°-15°)=cos15°
a
=(cos75°,sin75°)=(sin15°,cos15°)
a
-
b
=(sin15°-cos15°,cos15°-sin15°),
∴(
a
-
b
)•
b
=(sin15°-cos15°)cos15°+(cos15°-sin15°)sin15°
=2sin15°cos15°-(cos215°+sin215°)=sin30°-1=-
1
2

又可得|
a
-
b
|=
(sin15°-cos15°)2+(cos15°-sin15°)2

=
2(sin215°+cos215°-2sin15°cos15°)
=
2(1-sin30°)
=1,
|
b
|
=
cos215°+sin215°
=1
∴cos<
a
-
b
b
>=
(
a
-
b
)•
b
|
a
-
b
||
b
|
=
-
1
2
1×1
=-
1
2

又∵0°≤<
a
-
b
b
>≤180°,
a
-
b
b
的夹角<
a
-
b
b
>为120°
故选C
点评:本题考查向量夹角的求解,涉及向量的模长公式和数量积的运算,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网